SC
UNCLASSIFIED N88914-86-K-068!

RD;EiOS 376 AGGREGATES IN THE TENPORAL QUERY LANGUAGE TQUELCU)
NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF COMPUTER
IENCE R SNODanS

S ET AL. 27 JUL 87 UNC-TEMP1S-16
F/G 127

33

3

¥ FFEEPIS

.0
s

j
/

PP RS PO

16

|

a—

P
==

1.4

21

\

—
—
—
_

:

i
—f

)

NP U TR USRS RFCRI AP KA R VTR S IO IO IZCSUR R/ IO IOC R YUY I IR T RO AN RO R PO OO RO O A AR R R O OO RO OwT

» o ...

» v L.)

ONG FILE COEX
The TEMPIS Project

S,

Aggregates in the Temporal Query Language TQuel

AD-A189 376

oL

Richard Snodgrass, Santiago Gomez, and Ed McKenize_ D Tl G

N DEC 2
- July 27, 1987 1 1967 .
i «
Contract N00014~86~K-0680 D
~
X
Abstract
- —~. This paper defines aggregates in the temporal query language TQuel and provides their formal
N semantics in the tuple relational calculus. A formal semantics for Quel aggregates is defined in the

N process. Multiple aggregates; aggregates appearing in the where, when, valid, and as-of clauses;
nested aggregation; and instantaneous, cumulative, moving window, and unique variants are sup-

4 ported. These aggregates provide a rich set of statistical functions that range over time, while
P, requiring minimal additions to TQuel and its semantics. .
: TEMPIS Document No. 16

. Y
BN

N Copyright © 1987 University of North Carolina
fa
N Department of Computer Science
> University of North Carolina

' Chapel Hill, NC 27514

~

~ e
. ‘;‘ . .
S v.‘
= \

(s,

Py ATV TS VS S 19 PP S TR TR SN e TR S N G R R RIS AT ALY AP AR NP N A T T g
P DO N AN DN N S T N O O N T I A A A SO ol A

~

Table of Contents

1. Aggregates In Quel 1
1.1. Informal Specification of Quel Aggregates 1
v 1.2. Semantics of the Quel Retrieve Statement 3
1.3. Adding Aggregates to Tuple Relational Calculus 4
1.4. Unique Aggregation 8
1.5. Multiple Aggregation 9
1.6. Aggregates in the Outer Where Clause 9
1.7. Nested Aggregation 9
. 1.8. Expressions in Aggregates 10
1.9. Summary 10
) 2. Temporal Aggregates in TQuel 12
o 2.1. Adding Aggregates to TQuel 15
- 2.2. Cumulative versus Instantaneous Aggregates 19
s 2.3, New Aggregates 22
" 2.4. More Examples 23
- 2.5. Defaults 27
I 3. Tuple Calculus Semnantics of TQuel Aggregates 28
a 3.1. Review of TQuel Semantics 28
v, 3.2. New TQuel Aggregates 30
e 3.3. The Constant Predicate 32
. 3.4. Aggregates in the TATGEL LStcccorerrmssesrssssssennsnsisssassesssnsssssnenssssesssesasanassaves 34
3.5. Unique Aggregation 40
Vi 3.6. Multiple Aggregation 40
L 3.7. Aggregates in the Outer Where Clause 41
3.8. Nested Aggregation 41
3.9. Aggregates in the Other Outer Clauses 42
' 4. Related Work 43 T
s 5. Conclusion 47 - S
ACKNOWICAREIMENULSceeeeeeecrereaensnsacsssscsresssesssssossassasressasssaarsassssssassassansassassssnsssssassasssassans 47 |
- RELEIBIICES ...cvovvuerrrrenneaensersessreassmssssessssesnassssssssasnssssssssssssesssssssassssmssssssssnssassassassasess sesssessasssesstesansasssnse 48 T
. Appendix: SYNAX SUMMALYcccoccmirvrcecsnsnscscsesissssnsmessssssssessssssssassssnsacssessisasassmssnsessasssasassaanssease 49
*y . ke ' T\:— :.‘;:;_
: N Avar oTer T T
. v et Spescial
: .])
: \ lAA_
.
)
. : P) oW W W . e T T I S S N . Y
B e R R AT e B A T P Y S g T = S S ol S ¢]

Log g0 at ad gt . 33 at gt a1 ‘af gt § gt ‘at at - a¥ tats abotabs o8 ats et 2% @bt et BV 0'a 8V 8a 202 8t 4%a 80 AV 6% 4Y, Vg 8V 8V, 00, 4T

. w a -

Table of Examples
U
i
¥
1
Example 1: How many faculty members are there in each rank? 2
Example 2: How many faculty members and different ranks are there? 3 '
Example 3: One modification of Example 1. 10
Example 4: Another modification of Example 1. 10
Example 5: What was Jane's rank when Merrie was promoted to Associate? 14
Example 6: Example 1 on an historical relation. 15 !
¢
Example 7: How many faculty members were there each time a paper was sub-
mitted to a journal? 16 X
- : 4
Example 8: A third modification of Example 1 17 .
N
o
Example 9: Who made a salary in June, 1981 that exceeded the maximum salary)
made in June, 1979? 19
Example 10: Various combinations of unique and window sizes. 20 :
~
Example 11: Who was making the second smallest salary, and how rauch was it, :
during each period of time prior to 1980? 23 o
A
Example 12;: Who were the professors hired into or promoted to a rank while the j
first faculty member ever in that rank had not yet been promoted? 23 -
Exampie 13: How many different salary amounts has the department paid its "
members since its creation until 1981? 24 N
)
Example 14: Given the above set of experimental data, how equally spaced are "
the observations in time, and how fast is the yield growing per year? 25 o
'
Example 15: A modification of Example 14. 26 iy
Example 16: Example 15 on a quarterly basis. 26 .
‘.
5,
®
"M
:.-
il N
b))
®
kX
-~
MDA A 7 o A L AN, LT N B O O I AT A T S TITIIRVER G0 A IR S S iy Y T Ry

TR TR MO TON KN

Aggregate operators in query languages compute a scalar value from a collection of tuples in a rela-
tional database. Most commercially available relational database management systems (DBMSs) provide
several aggregate operations {Date 1983, IBM 1981, Ullman 1982). Recently attention has been focussed
on temporal databases (TDBs) that represent the progression of states of an enterprise over time. We have
developed a new language, TQuel (Temporal QUEry Language), to query a TDB [Snodgrass 1987]. TQuel
is a derivative of Quel [Held et al. 1975], the query language for the Ingres DBMS (Stonebraker et al.
1976). TQuel was designed to be a minimal extension, both syntactically and semantically, for that
language. Since Quel is fairly comprehensive in its support of aggregates, a goal in the TQuel design was

to extend those aggregates to operate over temporal relations.

This paper defines and formalizes aggregates in TQuel. We begin by developing a formal semantics
for Quel aggregates. An intuitive introduction to the TQuel aggregates is given in Section 2. Section 3 is
devoted to a formal semantics of TQuel aggregates. The final section compares TQuel aggregates with
those of several other query languages supporting time. Throughout the paper, a fixed-width font is used
for operators in the query language (e¢.g., count); a bold, fixed-width font is used for keywords (e.g.,

yeaxz); and italics is used for functions in the formal semantics (e.g., count).

1. Aggregates In Quel

In this section we present a complete semantics for the Quel aggregates, as a convenient point of

reference for the TQuel semantics to be developed in Section 3. An informal specification for aggregates is

given, followed by a formal semantics of the retrieve statement with aggregates in the Quel language.

1.1. Informal Specification of Quel Aggregates

The Quel operations for aggregation are

count The number of values that exist for a given attribute in a relation. Since every attribute has
exactly one value in each tuple, this operator yields the same result on all attributes of a relation.

any An indicator of whether there exists at least one tuple in a relation. It retums a 1 if the relation is
non-empty and 0 otherwise.

sum The sum of the values present for a given attribute. This operator can be computed only on a
numeric attribute.

The average, or arithmetic mean, of the values present for a given attribute. The average is
defined in the usual way, i.e. the sum divided by the count. Because of this dependency upon
sum, avg is also an operator on numeric attributes only.

The smallest of the values present for a given attribute. For an alphanumeric attribute, the alpha-
betical ordering is used to determine the smallest element.

oy R A v v Gt S A 2 o v A AT

, .
O Oats

max The largest of the values present for a given attribute. For an alphanumeric attribute, the alpha-
betical ordering is used to determine the largest element.

These operators can be used in two types of aggregation:
(@) Scalar aggregates, yielding a single value as the resuit.

() Aggregate functions, producing several values determined by calculating the aggregate over a subset
of the relation. Each subset consists of the tuples such that the contents of one or more attributes
grouped in a by-list are the same. Hence the result of an aggregate function is a relation whose
number of tuples equals the number of different values in the by-list.

While scalar aggregates are independent of the query in which they are nested, aggregate functions
are not. Since each value computed by such a function carries information on part of a relation, tuple vari-
ables in the by-list must be linked to the corresponding tuple variables, if any, in the owter query — that is,
they should refer to the saine part of the relation. (The inner query, as opposed to the outer query, is the
one consisting of the attribute to be aggregated, the by-list, and the inner where clause.)

By their very nature, both scalar aggregates and aggregate functions operate on the entire relation.
However, they can be [ocally restricted via a where clause to operate only on certain tuples of the relation.
The local or inner where clause is processed separately from the outer one of the query. We first show an
aggregate function, followed by a scalar aggregate.

EXAMPLE. Suppose the relation Faculty holds relevant data, say name, rank and salary, about the profes-
sors in a university department:

Faculty(Name, Rank, Salary):

Name Rank Salary
Tom Assistant 23000
Merrie Assistant 25000
Jane Associate 33000

range of £ is Faculty
reatrieve (f.Rank, NumInRank = count (f.Name by f.Rank))

Example 1: How many faculty members are there in each rank?

The range statement declares a tuple variable £ that will be associated with the Faculty relation. The

retrieve statement contains the target list of attributes to be derived for the output relation, in this case,

Rank and NuminRank:
2
» 5% (A o e) I RSN R T TN TG TR T L N '] e R e I i L S o T T TR S, WL, S Y2V Y
O DA Al aly ks < oA " .. A ,on;i‘ wn Gl oio.oo

" "

A= JEAAS

LN L4

Rank NuminRank

Assistant 2
Associate 1

The output relation contains as many tuples as actual vaiues exist in the by-list. If there had been no by-list,

NuminRank would be 3 in all the derived tuples. [|
Aggregation performed over the set of strictly different values in an attribute is called unique aggre-

gation. Quel supports three unique aggregates: countU, sumU, and avgU. Unique versions of any,

max and min are not necessary.

EXAMPLE. This example illustrates multiple scalar aggregates and unique aggregation.

range of f is Faculty
retrieve (NumFaculty = count (f.Name), NumRanks = countU(f.Rank))

Example 2: How many faculty members and different ranks are there?

The result is a single tuple:

NumFaculty NumRanks
3 2

1.2. Semantics of the Quel Retrieve Statement

A tuple relational calculus semantics. for Quel statements without aggregates was defined by Ullman
{Ullman 1982] and is reviewed here. Aithough values in a target list can be expressions, rather than simply
attributes, we ignore that detail in this paper for simplicity of notation. Thus the skeletal Quel statement is

range of ¢, isR,
:ang. of t, is R,

ratrieve (‘,’l.DI", ey l,-’.DI")
where y

in which

1Si,Sk,...15i, Sk
lsjl Sdeg(Rh)' w1 Sjr Sdeg(R,,)

where deg (R) is the degree of R, that is, the number of attributes in each tuple of R. The corresponding

tuple calculus statement is

.

f’ﬂ'f’"- l"\f’l"'

-
Cow]

>
W

Coe SN

' .rJ' ‘4‘ N '. (\ o AR o -'_ o -; "

T W WY LA T TR TP 1 “pt ogat . 8a% $a0.4n 82t 8.0 820 &0 B.dele

{w(” 1G4 Ga)
Ry - AR (%)

Awlll=g (R - K wirl=40]

)

This statement specifies that the tuple ¢; is in the relation R;, the result tuple w is composed of r attributes,
the m-th attribute of w is copied from the j,, -th attribute of the tuple variable ¢, , and that the participating
tuples are determined by the restriction y’. We use y’ instead of w to indicate modifications for attribute

names and Quel syntax conventions.

13. Adding Aggregates to Tuple Relational Calculus

The semantics for the Quel retrieve statement with a@egam will be presented now. We first intro-
duce the aggregate operators to be used in the tuple calculus. This material is new, and is based on Klug's
method, which was used in a separate, more formal tuple relational calculus [Klug 1982]. In this approach,
an aggregate operator, defined as a function, is applied o a set of r -tuples, resulting in a tuple containing r
attribute values, with each attribute value equivalent to applying the aggregate over that attribute. By
applying the function to the set of complete tuples, the distinction between unique and non-unique aggrega-
tion can be preserved.

Let R be a relation of degree r containing n tuples, 2 20, and let ¢ be a tuple variable associated

withR.
DEFINITION. count(R)4 (n,....n)

That is, the count function yields a tuple whose r componeats equal .
DEFINITION. any(R)4 (sign(n), ..., sign(n))

The sign function produces the value +1 if n is positive (at least one tuple in R), and 0 if » is zero (no
tuples in R). Again, all r componeats of the result tuple equal the same value.

For the remaining definitions, assume 1 > 0.

DEFINITION. sum(R)4 [2 (i, ..., zz[r]]

ek teR

Each component of the result tuple equals the sum of all values in the corresponding component of the
tuplesof R.

"N %, ¥

CI AL

- ‘)"!‘l‘)'&‘l

e T

eI

CAALAAY

RRADO0

o
- ®

G N G A A AT R Ty
.oav, - M 3 -l - ' X ol . . ")

Y . L L N LT LI L L L LA U LA A T O R U O U U U U U U LY UMM U U U U U U U LR UM U U U AT WIS U URIP AN LR LA UV T LW W O ORI OeT

DEFINITION. avg(R)A[3 e(1), .. —}::m
LIPY LIPY

" Each component of the result tuple equals the average or arithmetic mean of all values in the corresponding
) component of the tuples of R .

) DEFINITION. min(R) é(mil‘l e}, ..., mil} tfrh
te te

. Each component of the result tuple equals the minimum of all values in the corresponding component of
o the tuples of R .

W DEFINITION. max(R) 4 (max ¢(1], ..., max ¢(r])
s: teR teR
L)
¢ Each component of the result tuple equals the maximum of all values in the corresponding component of
, the tuplesof R.
W
,:: For n =0, swm, avg , min and max are arbitrarily defined to be 0. However, new implementations can
%
::‘ be more consistent with reality if they return a special null value for those cases [Epstein 1979].
i The advantage of defining aggregate operators to work on relations instead of on domains is that
4
: duplicate values enter the set calculations without difficulty. Later on we consider unique aggregates,
P which eliminate duplicate values to compute aggregates over unique values.
!
, The functions defined above are used in the wple calculus semantics. Let F be any of the aggre-
N
> gates defined in Section 1.1. Quel queries with one aggregate function in the target list are of the form
-
>
L :ange oft,isR,
N range of{, isR,
'.: retrieve (i, .D;,....4D;,y =F(4, Du, by 44, Dy, ..., ;. .D, where y,))
5 where y
~'
3 in which
1<i,gk,..,18i, Sk
; 1<, <k,..., 181, Sk
1 S]] < deg (R;‘), ooy 1 Sj, < deg (R,'_)
. 1Sm, s deg(R,), ... 1S m, <deg(R,).
A
Again, we simplify the expressions appearing in the aggregate to attribute names. There is also the restric-
¢
: tion that the tuple variable(s) mentioned in y, must be either ¢, or one of the tuple variables appearing in
o
N the by clause: ¢, ..., f; (otherwise, there may be many more tuples participating in the aggregate, i.e., those
, from additional tuple variables, thereby generating unexpected results from the aggregate). The attributes
‘l
: outside the aggregate, D;, - - -,D;, and the attributes used within the aggregate, D,,,, - - -, D,,, usually
~
~
- 5
1

At .30, o, W AR N PR A C S NS

et L e /._-J'"I\{_ .r_.\fsa-‘.,__ LU _‘.-N.r_._ X
4) .) o 4 o

}

T * 4 P W T T T T R T o o S L 7 P L o e

overlap, but need not. This aggregate

(a) takes the cartesian product of the relations associated with the tuple variables appearing in the aggre-
gate,

(b) removes all resulting tuples that do not satisfy the condition in the where clause of the aggregate, -
(c) partitions the resulting tuples by the values of the attributes listed in the by clause,
(d) applies the aggregate to each partition,

(¢) and finally associates the result with each combination of tuples participating in the original query, ‘
with the partition selected using the values indicated in the by clause.

We first specify the partition of the cartesian product of the relations associated with the tuple vari-
ables appearing in the aggregate. Initially assume that the tuple variables ¢ , ..., ¢ are all distinct. Define a \
partitioning function P comesponding to the aggregate in the query as a function of n — 1 values
ay, ..., @, given by

P(az.....a.)‘é{b ©iGg) - G
R @)Kk -+ AR (1)
Ro(1] =4 1]k --- Rb{p]=1 [deg (R})]

Midmal=ash - hylm)=a,

Ayy) }

A

r

A -

where p 4 Y.deg(R,). Each of the combinations of values a,, ..., a, existing in the specified attributes ”
im] o

produces one partition on which the aggregate has to be applied. ®
EXAMPLE. The partitioning function for Example 1 is particularly simple: ::
P(az)={b O | Gf NFaculty (f) kb = f Xf[Rank]=a;)}
.

-

For this particular Faculty relation, P (Assistant) = {(Tom, Assistant, 23000), (Merrie, Assistant, 25000)} -
and P (Associate) = {(Jane, Associate, 33000)). Note that we use attribute names rather than indices for E

notational convenience. |Jfl

»
.

Ry

ey e A mp e ettt
ATl A e L T S .

BTN Y O O U R I R o 4 o - 80 a f e b mts s n'h otk ati oth VA ata-o¥a: ¥at

-
D
]
' Let F be the aggregate operator defined above corresponding to the Quel aggregate F (e.g.,if F is
L)
: count, F is count). A term of the form F (R) will denote the tuple obtained from the application of
: aggregate operator F to relation R. The operator F applies the same aggregate to every attribute in R. Let
)
;: F (P (a,, ... a,))[m] denote the m-th atribute of the tuple evaluated by F (P (a,, ..., a,)). For Example 1,
%
't count (P (Assistant)) = ((2, 2, 2)} and count (P (Assistant))[Name] = 2.
N The counterpart tuple calculus statement for the Quel query is then
4
a o
N w1 Gy -G
L
. Ry(E) R - KR ()
kwlll=4 0k - K wirl=¢[]
\ Aw(r+1l=F (P (4,[m;], ..., 4, [m]))m]
X ’
), v)
[
f . The partitioning function computes the partitions, with the appropriate partition selected by the
. parameter(s) passed to P . If the wple variables appearing in the aggregate are not distinct, then the first two
lines in the definition of P should be altered to eliminate duplicate tuple variables. Also, if tuple variable ¢,
A does not appear outside of the aggregate or in the by clause, then that tuple variable should be removed
‘ from the first two lines.
s EXAMPLE. The tuple calculus statement for Example 1 is
\ {w @ | G f WFaculty(f) Aw{1] = f [Rank] X w[2] = count (P (f [Rank])){Name 1)} (Ll
3 For a scalar aggregate, there is no by clause and the partitioning function P is a set rather than a
i
8 function, namely
“
' P g{bw FEu)R, ()b =fl.“|’1')}
.
; where p =deg (R,). Here, P is formulated to emphasize its similarity with the more general partitioning
'\:) function given earlier. As expected, P computes a subset of R, . The tuple calculus statement for the query
remains the same as above, except that P is used in place of P (1,(m), ..., t, [m, 1).
: 7
T '.P' Ny 'c & S '-I' e N '4-,;.‘-\'.1-‘: e el el et et e e NS L .; \' LR “i‘;}.&’;f&:r}i:ﬁ‘:ﬁ

¢ gt A ai A% BT 2wt g% ata a0 sl 4t o0 sk abl pvo gt gu g€ ab . a% el gt gt g gt. 4B a8 st v a's 8%2 g"a 4'e 82 $%0 4a.8" 0000 08 8.0 a® 02t 02 8a® B2t 2280,

EXAMPLE. For the count aggregate of Example 2,
Py = {b"’ | @f WFacuty(fIRb =f)} Hil

For a query involving several aggregates, a separate partitioning function P (of either the scalar or
functional form) is defined for each aggregate. d
1.4. Unique Aggregation

The aggregates as defined cannot do unique aggregation directly, because they operate on relations,
not on attributes. It turns out, however, that a slight change of the partitioning function P soives the prob-
lem.

Let the modified partitioning function be defined in terms of P as

U @,,...a,)4 {u Oy Gb)Xb e P(ay,....a.) hull) =b[m1])}

The net effect of this is the elimination of all duplicate values from the attribute upon which aggregation
will be performed.

For a scalar unique aggregate, the partitioning set U is defined in a similar fashion based on P,

U g{u“’ | @b)beP Au[l]:b[m,])}

The tuple caiculus semantics of all unique aggregates is simply obtained by substituting U for P in the

R P P N

main formula of the previous section, and using the previously defined operators count , sum, and avg .

EXAMPLE. For Example 2 for the countU aggregate,
Py= {b(” | Gf XFacuty(f)Ab=f)}

U2={u“’lGbXbeP2Xu[l]=b[2])} -

= ((Assistant), (Associate)} |l 3’

»

N

N

™

2
A

i.h

N 2l el AR VAl A% fah tak tafatal ab Sak. -ad gl S $og b Bat S’

1.5. Multiple Aggregation

A Quel query may contain multiple aggregates. Each of the aggregates is computed from its own
partitioning function. All the partitioning functions are then referenced in the main tuple calculus state-

ment

EXAMPLE. The query in Example 2 contains both count and countU aggregates. We gave the
definitions for the two partitioning functions (actually sets) P, and U, above. The corresponding tuple

tuple calculus expression is then

{wm | w[1} = count (P)[Name] X w[2] = count (U »)[Rank))}

Since the tuple variable £ being aggregated over does not appear outside of the aggregate, it also does not

appear in the tuple calculus statement. |||

\

1.6. Aggregates in the Quter Where Clause

So far we have seen standard and unique aggregates being used in the target list of a query. They can
also appear in the Quel where clause.

Let us first deal with an aggregate in the main where clause. If it is a scalar aggregate, it is indepen-
dent of the rest of the query and therefore it is simply calculated and replaced by its value. However, if an
aggregate function appears in the outer where clause, its corresponding partitioning function is defined, and
the values of the aggregated attribute are used in place of the aggregate in the query. Following the rule
that the tuple variables in by-lists are giobal, the by clause is linked to the rest of the query through the

arguments to the partitioning function.

1.7. Nested Aggregation

A similar rule applies in the case of nested aggregation, that is, when an aggregate function Fy
appears in a local where clause of an aggregate F,. The tuple variables in the by-list of F, are linked to the

tuple variables of the same name appearing in their outer environment (that is, the F, query).

Nesting may be deeper, with F, nested in (called from) an outer aggregate F,. Again, tuple variables

appearing in the by-list of F; are linked to the tple variables of the same name appearing in F,, and so on.

.........

0D 25 2% <8 a'e 8% 0% 8 N2 ¥ab ol 0,8 %20 Y20 7202 A'a' 202 4% 6-'8.8%2.4'4.% &t 2V and A'24'2.6'4.6'2. 8 2.8'2 A'a V2 At 28802 'atotal tabatl el ‘ol tal t2d &, r Vo bah G870, §°¢.0 t.3°

Links are accomplished via the arguments to the partitioning functions. Thus, at any one time, only one

level of nesting need be considered [Epstein 1979].

1.8. Expressions in Aggregates

In the formal semantics, we assumed that a single attribute was aggregated, after partitioning by zero
or more attribute values. Quel allows arbitrary expressions to be aggregated, and supports expressions in
the by clause. The former can be accommodated by simply substituting the appropriate expression for
F (- --)in the line specifying the output aggregate attribute in the main tuple calculus statement.

EXAMPLE. If Example 1 was modified to

range of f is Faculty
retrieve (f.Rank, This=count (f.Name by f.Rank) *count (f.Salary by f.Rank)) '

Example 3: One modification of Example 1.
the only change would be in the computation of w {2):]
w (2] = count (P (f [Rank 1)){Name 1*count (P (f (Rank 1)){(Salary] i)
Expressions in the by clause require two changes: one in the definition of the partitioning function where
the parameters are equated and one in the main statement, where values of the parameters are specified.

EXAMPLE. If Example 1 was modified to

range of f is Faculty ’]
retrieve (f.Rank, This = count (f.Name by f.Salary mod 1000))

Example 4: Another modification of Example 1.

the modified partioning {unction definition and tuple calculus statement would be

P(ap)= {b‘z’ | Gif)Y Faculty(f)Ab =f X f [Salary] mod 1000=a2)}

{w D | Gf Y Faculty(f) A wl1) = f [Rank) k w{2) = count (P (f [Salary Imod 1000))[Name }) }]

1.9. Summary

There are six fundamental operators that perform aggregation in Quel. The grouping and selection of

tuples to be aggregated is done by the partitioning function, which also determines whether the standard or

the unique version is being used. Aggregates may appear in the outer where clause, as well as nested in the

10

3 '-"‘-'\‘.'\'VFN SN T WY N TN LW e e Nt - .-y, ™ AT RCRE AT LT - .
\i‘ I . AN A A d‘ l‘ E -/' AN AN L A L S)
l'-.l.tl‘v. 0 A% ~l. WG l. yolls ; v'ﬂ‘ RGN0 'r ﬂ ‘-".\' W/ .

inner where clause. The depth of nesting is arbitrary.

While only the semantics for the retrieve statement has been given, it is easy to extend it to specify
aggregates in the Quel modification statements (append, delate, and replace) [Snodgrass 1987),

using the strategy discussed in this section.

11

N I TN AT I
\,’.{..,\‘,\'.

2. Temporal Aggregates In TQuel

In the previous section we have seen the various Quel aggregates and their formal semantics. We
now introduce TQuel aggregates in an intuitive way through examples. We first give an overview of the

TQuel language and then turn to aggregates.

TQuel is a version of Quel, augmented to handle the time dimension {Snodgrass 1987]. TQuel sup-
ports valid, transaction, and user-defined time, and thus supports temporal queries [Snodgrass & Ahn
1986). Of the three, valid time, modeling the real world occurrence of an event, is by far the hardest to sup-
port in aggregates. Transaction time, modeling the storage of information in a database, may be supported
through one additional term in the tuple calculus semantics. User-defined time, an encoding whose seman-
tics is maintained by application programs, is handled in an identical manner to more conventional data
types such as integers and character strings; all that is necessary are input, output, and comparison func-
tions. To simplify the exposition, we will not use transaction or user-defined time in the example queries
or in their formal semantics. In the general formal semantics, we will include transaction time, to illustrate

how easy it is to support.

Temporal relations are four dimensional. Multiple tuples containing multipie attribute values contri-
bute two dimensions; valid and transaction time contribute the other two dimensions. For both the exam-
ples and the semantics, we embed these four dimensional structures into two dimensional tables, appending
additional, implicit time attributes that are not directly accessible to the user. Other embeddings are possi-
ble (five are given in [Snodgrass 1987]), but will not be used here. The degree (deg) of a temporal relation

is the number of explicit attributes.

Relations in TQuel can represent either a collection of events that happen at certain points in time
(event relations), or a collection of intervals that have a duration, that is, a from time and a 7o time (interval
relations). Thus, event relations have one valid-time attribute, at, whose value represents an interval of unit
duration, whosc length depends on the granularity of valid time. In the examples, we have assumed a
timestamp granularity of one month: events occurring within a month cannot be distinguished in t'me.
Interval relations have two valid-time attributes, from and to, whose values together represent an interval of
arbitrary length. ¢,, when assigned to the valid-time attribute at, represents the interval (1, £,+1). If £ sim-

ply precedes ¢, in the linear ordering of time, then ¢, and ¢,, when assigned 10 the valid-time attributes

12

.t e .

7{) ALY

s a_ e

ENERERN IR AN AN RARN A A AN AN NV LY W UT DY VRV SEXFRNNTY INTIVY NN FUN Lo 8" By AL NN ANR YR NN $'2.8°2.8% 1%2 2% g% ats’

from and 1o respectively, represent the interval (¢4, ¢5). Although not shown in the examples, both event
and interval relations carry two transaction-time attributes, start and stop, indicating when the tuple was
recorded in the database and when it was logically deleted from the database, respectively. The assignment

of the transaction times to a target relation is made by the system when data are recorded.
The TQuel retrieve statement augments the standard Quel retrieve statement by including

* awhen clause, paralleling the already existing where clause, to select tuples whose temporal attributes
satisfy desired temporal constraints;

* a valid-ar clause that permits the assignment of a non-default and possibly computed value to the
valid-time attribute of a target event relation;

» valid-from and valid-to clauses that permit the same kind of assignment to the valid-time attributes of
a target interval relation; and

= an as-of clause 1o specify rollback to a previous transaction or series of transactions.

EXAMPLE. The relations Faculty, Submitted and Published, shorter versions of those appearing in

{Snodgrass 19871, contain the following tuples:

Faculty(Name, Rank, Salary):

Name Rank Salary | from 7]
Jane Assistant 25000 9-71 12-76
Jane Associate 33000 { 12-76 11-80

Jane Full 34000 | 11-80 12-83
Jane Full 44000 | 12-83 o0
Merrie Assistant 25000 9-77 12-82
Mermie Associate 40000 | 12-82 oo

Tom Assistant 23000 9-75 _12-80

Submitted(Author, Journal):

Awthor Journal at

Jane CACM | 11-79
Memie CACM 9.78
Meme TODS 5-79
Merrie JACM 8-82

Published(Author, Journal):

Author Journal at

Jane CACM 1-80
Mermie CACM | 5-80
Memie TODS 7-80

13

-y AT e e e At AN AT A A e m ey e N T T 4t A A AT g <
,\ 2 'r\‘h?'a S A *m\v\-\/ T N e - z AN A A AT *:‘f‘a‘:‘;‘f iy f -J\J\ \ oy \¢*_\

FX A

N . "'1"3‘[w,

...
PRI NP

APPSO

)l I Se)

N YRYE

R 2 s . P

A representation of the tuples in the three relations is shown in Figure 1. The first example TQuel query
contains no aggregates:

zange of f is Faculty
range of £2 is Faculty
retrieve (f.Rank)
valid at begin of f2
where f.Name = "Jane™ and f2.Name = "Merrie™ and f2.Rank = "Associate”
when f overlap begin of £2

* Example 5: What was Jane's rank when Merrie was promoted to Associase?

Figure 1: Example Relations shown on a Time Line

. L ' ‘I‘ord Assistam, 23K _:; ermie, Afsociate, 40K
] T L
-] i] t]
Meme.Awsud. 25K
' Faculty relation ' vk i '
: ' { i Jaoe, Associae, 33K . i Jane, Full, 44K
1 [r ' [[—
; Jane, Assistarnt, 25K P W Jane Full, MK
L 'y —1 A :—; i 1
T T T T w7 s T e T T o T 9 T 0" 7 2 ' 8 ' wu
R » Merrie, JACM
Submitted relation + Jane, CACM
* Merrie, TODS
« Memie, CACM
T " T T T s T T m T m T ™ ' oo ' - o 8 ' o
+ Memie, CACM
» Tane, CACM
P T T T 7 s T e T T T 9 T 0 ' -t ' 82 ' 83 ' &

Only two tuples will participate in this query, (Jane, Full, 34000, 11-80, 12-83) for £ and (Merrie,
Associate, 40000, 12-82, <o) for £2, based on the where and when clauses. The target list specifies the

value of the Rank attribute and the valid-at clause specifies the value of the implicit ar attribute. The result-

ing relation has one tuple,
Rank at
Full 12-82
14
) - - R c M AT R A" B & ., PR 5 - et -‘.
N TN AT AT A T N D D, e P et A e P e L S P

e W @ -

e

AN LY x

2.1. Adding Aggregates to TQuel

It is desirable that TQuel aggregates be a superset of the Quel aggregates, with a natural time-
oriented interpretation. Therefore, the TQuel version of a Quel aggregate will perform the same fundamen-

tal operation, while ranging over an event or an interval relation.

There are some differences between Quel and TQuel aggregates. Historical and temporal daabases
are characterized by the changing condition of their relations: at time ¢, a relation contains a set of tuples,
and at time ¢, the same relation may contain a different set. Since aggregates are computed from the entire
relation, this in tum causes the value of an aggregate to change from, say, v, to v,. Hence, while in Quel an
aggregate with no by-list (scalar aggregate) returns a single value, in TQuel the same aggregate returns,
generally speaking, a sequence of values, each attached to its valid times. For an aggregate with a by-list, a

sequence of values for each value in the by-list is generated.
EXAMPLE. Let us consider Example 1, this time on an historical relation:

range of £ is Faculty
retrieve (f.Rank, NumInRank = count (f.Name by f.Rank))

Example 6: Example 1 on an historical relation.

This query retrieves each rank, together with the current number of faculty at that rank. With the defauit
when clause (when f overlap now)and valid clause (valid from begin of f to end of
£), the resulting relation is

Rank NuminRank | from to
Associate 1 12-82 o
Full 1 12-83 o

Defaults are discussed in detail in Section 2.5. To extract the history of the requested count, simply use an

explicit when clause: when tzrue. As can be seen in Figure 2, for each rank there can be more than one

related count over time,

15

NN 'I,{I.:-‘\'J‘:J‘;I e P S o '.-;.-_:.r ‘.";. ‘a.:.»;.-“_.r;.- o e ;.»:.- AN A AT SR T R S
- B ol v , . B -

Figure 2: An Example of count

ure 1). il

an event relation in a query.

range of £ is Faculty
range of s is Submitted

when s overlap f

a journal?

e e T N N T e

44444

......

| Focdyrelion L Tor Ao, 25K : e
i(just for the Assistant rank) : : Meme.AuunnE?.ﬂ(:
; Jane, Astinant, 25K 1 P E E
HE ' 1 ' ' '
f 71: T £ T = T 2 T ”: T 1¢ fﬁ?{ T T ”‘T 0 :r P T 2 :I
e E count (Name) E E E E E
: 2 2 ; ;
’ , " T I
:r ﬂ t i ! !
r71"?2'?:"1‘"15;' 1cl*#fnﬁnﬁn"n'n+
i The altered query yields the following tuples
Rank NuminRank | from to
Assistant 1 9-71 9-75
Assistant 2 9-75 12-76
Assistant 1 12-76 9-77
Assistant 2 9-77 12-80
Assistant 1 12-80 12-82
Associate 1 12-76 11-80
Associate 1 12-82 oo
Full 1 11-80 12-83
Full 1 12-83 i

The count may change only when a Faculty tuple is created, or becomes invalid. Thus each output wple

is valid between two events (represented by vertical dotted lines) in the graph of the Faculty relation (Fig-

EXAMPLE. The next example shows how an aggregate, which gives an interval relation, can occur with

retrieve (s.Author, s.Journal, NumFac = count (f.Name))

Example 7: How many faculty members were there each time a paper was submitted to

ISy L UL UL P T LR L TSN 1 LU Y I 3 tat o ey * ak " ML i M MU U A O USSR OWUN U N U U (LA W LTSN LU U LY LU

0
3:3 The result is:
K
s,
Author _ Journal _NumfFac at
Memrie CACM 3 9-78
0 Memie TODS 3 5-719
i Jane CACM 3 11-79
‘ Mermrie JACM 2 8-82
l:.
The count is computed for every period of time such that £ overlaps s, and then, by default, the valid
- times of the output are the overlap of the valid times of the count, the £ tuple variable, and the s tuple
W
. variable, producing an event relation. il
v
]
Quel allows an inner where clause as the way to preselect ples for the computation of the aggre-
W
gate; otherwise, aggregates always operate on the entire relation. Similarly, in TQuel the inner where,
when, and as-of clauses serve the same purpose. An inner valid clause is not allowed, because the interval
o of validity for the value calculated by the aggregate is indirectly specified using the for clause, to be dis-
2 cussed in Section 2.2.
‘)
1)
-;. EXAMPLE. Consider the query in Example 6, modified to exclude Jane from the calculation of the aggre-
i
- gate:
» range of f is Faculty
':: retrieve (f.Rank, NumInRank=count (f.Name by f.Rank where f.Name!="Jane"))
- Example 8: A third modification of Exampie 1
. Again, with the default when and valid clauses, the query yields the following tuples
Y
- Rank___ NuminRank | from 10
s Associate 1 1282 =
e Full 0 12.83 oo
o Note that a default value of zero occurs for each point in time when a tuple of the specified rank is valid,
>
' but the subset of ples used to compute the aggregate is empty. |llli
. The above examples illustrate our approach to computing TQuel aggregates. To aggregate a given
e attribute of relation R ,
)
) (a) Determine the periods of time during which R remained ‘‘fixed’® or ‘‘constant’’, that is, no new
e tuples entered the relation (and, if R is an interval relation, no tuples became invalid).
" (b) For each constant set of tuples in R, select the tuples that satsfy all the qualifications required by the
4 inner where, when, and as-of clauses, if any. Defaults are used if those clauses are not present.
.
> 17
Y

P
5 W
B ¢

.

‘\' YOOy

\',.'b

‘ Y ‘\' * NIyt " ‘,:-*._'-'\f‘-._‘_.:-..‘-.':. “u ..‘;.'_'.._'-‘_) e et '. '..-,-,_ ,.'._-"..'....'/\4'_‘(

.8y

A e

NI B . « . e . 5 a® . g ’, », (3 oah 3 at, v 2 oY, 2 af, AR Y “ogat . aa® pat dat c 9.8 a0 ataletas st 'y

(c) If there is a by-list with this aggregate, subdivide each constant set of tuples into subsets, each subset
corresponding to one value of the by-list attributes. Each group of selected tuples is called an aggre-
gation set.

(d) Compute the aggregate for each aggregation set.

(¢) Associate the result with each combination of tuples participating in the original query, with the
aggregation set selected (1) using the values indicated in the by clause, (2) usi~g the valid time of the
tuple variables appearing in the aggregate, and (3) using the interval or event specified in the valid
clause.

The basic strategy consists of reducing a TQuel aggregate to a series of Quel-style aggregates, each applied
on a period of time when the relation does not change its contents. Each value of the aggregaie is associ-
ated with an assignment of values to the by-list attributes, and is attached to the particular period of time it
was valid. At each point in time, there is exactly one value of the aggregate for each combination of values

of the by-list attributes.

This approach is necessarily more complex than that given in Section 1.3 for Quel aggregates. In \
TQuel, for each interval during which all base relations participating in the aggregate(s) remain ‘‘fixed,”’
an aggregate tuple is computed for each aggregation set. In Quel, all base relations are already fixed, since
the relations do not vary over time. This aggregate tuple, along with tuples from the base relations that are :
valid over the interval, determine the output tuples for the interval. Whereas Quel uses only the explicit
attribute values via the by clause to connect the aggregate tuple with the participating tuples in the retrieve
statement, TQuel also uses the implicit time values. Any combination of aggregate and base-relation tuples
that satisfy all qualifications required by the outer where and when clauses, and also overlap, produce an
output wple. In addit.on, the valid time of each output tuple is required to be the overlap of the interval or
event specified by the valid clause with the overlap of the aggregate tple and base-relation wples named in
the aggregate.

The restriction that the valid time of the output tuple be the intersection of the valid times of some of)
the participating tuples and the aggregate tuple as well as the time specified by the valid clause does not ‘
limit the range of queries that TQuel can support. To support queries whose output is derived from aggre-
gate and base-relation tuples valid over different intervals, we simply pre-compute the aggregates and treat
them as ordinary historical relations in the main TQuel query.

EXAMPLE. The following query combines information from two separate intervals of time. Y

18)

Lot

O

. h et At et e et et % et e e s e e ma e v s
< N A AN RN A PNy e N ey,

'-f \.-'v'\.

8 g % g da e Qe g 6 52 aa ga’ 2% Bat a7 $a7 Ba? Bal Pt fac bat e afa' ta Ve 02 ada'a¥ ATk 2R ath 2%2'2'2 2'h %2 &'2 a'h 22 2'2 2% 2 4.0'0 808 Mol o0 o iad ta), Abg gb

range of £ is Faculty

retrieve into temp (maxsal = max(f.Salary))

range of t is temp

retrieve (f.Name)

valid at "June, 1981"

wvhere f.Salary > t.maxsal

when f overlap "June, 1981" and t overlap "June, 1979"

Example 9: Who made a salary in June, 1981 that exceeded the maximum salary made
in June, 19797

With the default when clause (when true) and valid clause (valid from begining to for-

ever) for the first retrieve statement, the query yields

Name at
Jane 6-81

1]

By pre-computing the aggregate and substituting the resulting historical relations for references to
the aggregate in the main query, we have in effect reduced the TQuel query with aggregates to a TQuel
query without aggregates. Hence, there are no implied restrictions on the valid times of the aggregate and
base-relation tuples that contribute to output tuples or the valid time of the output tuples.

2.2, Cumulative versus Instantaneous Aggregates

An aggregale may or may not take into account tuples that are no longer valid. The following

definitions are useful:

Cumulative Aggregates. If the value returned by an aggregate for each point ¢ in time is computed from all
tuples that have been valid in the past, as well as those valid at ¢, then the aggregate is said to be cumula-
tive.

Instanianeous Aggregates. If the value retumed by an aggregate for each point ¢ in time is computed only
from the tuples valid at time ¢, then the aggregate is said (o be instantaneous.

These aggregates act differently when applied to an event or an interval relation. For an event relation, as
the length of the time unit (the timestamp granularity) is reduced, the probability of finding any valid tuples
decreases. Aggregates such as count, applied at a given instant, would thus return different results
depending upon the granularity of valid time. On the other hand, it is always possible to count the events
that have occurred in the past, or in a given period of time, in a cumulative fashion. For an interval rela-

tion, tples are valid over an interval of time which is at least as long as the timestamp granularity, and

19

A AL D T A" P e I R TN NS I e T AT D NG R T S T DR I I I D I e Il S
N D P R N A O O M O G T N T A I AT G AT AT

LR Y]

J.'.ﬁ'\\lr-.:v

5o @ A OtV

av dte g B 2 2o a d'a dia %0 A% &'a f'a £ 2% £'a 210 4% 2%2 8%, g 1Al ab. b, atl FOPTOTWRITR ol ab ab et at. b At al ab g% \ab. ab ab. g ik gt o0, ‘gt

therefore the above problem does not exist. We therefore restrict aggregate operators over event relations
to be cumulative, while aggregate operators over interval relations can have both an instantaneous and a

cumulative version. However, each value of an aggregate, be it instantaneous or cumulative, is valid dur-

ing a period of time.

A = .

For cumulative aggregates, the user must specify how far in the past to include tuples used 0 com- '
pute a value at time ¢. The for clause is used for this purpose. Instantaneous aggregates (the default) are !
specified using for each instant. If all previous tuples are to participate, for ever is used.
Intermediate cases, such as using only those tuples valid at some point in the previous year, are specified)
using for each < time unit>, e.g.,, for each year, for each day. If, say, count (for
each year) is used, then the aggregate, when computing a value valid at a particular month m, will
operate over all tuples that were valid sometime during the year up to and including the month m. The]
value at 3-76 will include all tuples valid sometime during 4-75 through 3-76; the value at 4-76 will include
the (potentially different) tuples valid sometime during 5-75 through 4-76. The interval used (in this case,

year) is termed the window, and such aggregates are termed moving-window aggregates.

EXAMPLE. To illustrate the difference between the various kinds of aggregates of an interval relation,

consider Figure 3, which illustrates the execution of the following query,

range of f is Faculty 9

retrieve (Cl= count (f.Rank for each instant), C2=count (f.Rank for each year), ;
C3=count (f.Rank for ever), C4=countU(f.Rank for each instant),
CS=countU(f.Rank for each year), Cé=countU(f.Rank for ever))

LY

I

Example 10: Various combinations of unique and window sizes. o

on the historical Faculty relation shown in Figure 1. Because the tuple variable £ does not appear outside '
[]
the aggregates, the default when clause is when true. Hence, the entire history of the counts is com-)
puted. [lif Z
-

F

20
A O N e T U N R R N S T S N A S A A N A N T N T S R A A N O A AR A

‘ Pt e s 8 s KX %5 - aCial o % i SR 7. -hul.l.!. > .lt. -tu.. 1.‘\11'# .o %, -Ia\F.\ ..DF.-.F-M)“-. -......--,
&
o
v 0
“
-\.
.\.
v £ . o
g 3 A ~p ! ~ .
.11 1] eeeeeaa- -4 1 1 0)] eccweaeecA4e - 5§
mw 3 X N 3 ~ «~ o ’,
. & - 3 3 3 ~ 3 3 .
-1 | O i i i g 1.1 g v
-M. - T - TZzZzz=2:=z:= =93 ity el i -------1 oalalialnie Tz meI- oo g aitainn ittty '
m' 4] e 4] L] = H " o KA
B o™ P ¥ L] (o] « Py -« o L] ~.
'} i L | | i e
X 1 e i Rt SEEEEE SRR 1 71T N SRR o

Full,
2
52

2
2
2
02
82
82
.

ane,

T
2

T

T
5
T
2
T
3

T

" J
:l
om
n
n
"
4
)
L
i
)
v
)
L
[
]
I
1
)
4 4
] I
" 1
" "
il Fy3
Vom
]
]
1
]
1
{
1
'
L)
8
{
)
]
]
T n
" 1l
" "
1 "
3 "
2y
!)]
} il
[} H
1 "
1 "
] "
A Ah
T m
t
"
"
{
Sl
oo
A7 \.:

Y4
4
m [s g g g g g g K
- '
< s L B i 5 R R
4 1K o
. [2a]
8 m - 2 2 2 2 '3 3 2 "5
m 1Y M [« - o~ o (o] 5
> 8 : - - 5 8 N 5 5 ..\
m m < r e e 4
g 8 m ® e r r A
w --M.-L,.....--Ll S S e % bt I S it EUNINE B st = cobettets NP 4{---., .~.
< 5 S) 3 r r g 3 3 3 y
9% b~ m ~ " -« o~ —~e «a
»n | __} 5 - +» M 5°
B A B Ik sl (T UEREyE Lo NpIPI TOIG SIS - - -] [e ee--- - s
- [o s 87T g T T .
2 L 3 8 3 2 ° ° 2 i
o ~ o~ — -— - - o~y ‘
L - ol <
| PRI (S O X S L O AR it S :
R I, 1, ---9-- L- S SRS SN NN SR] .= __] (O I SN . ;
m <l I? : ﬁ b S Fd 3 - y] : e e Fd .w
i R R | : R R [K
v -
” S m Ed - 2 - :] X v : - ® - 2 >,
> | g & X v o ﬁ o c 5
s e <l F [+ R o |- (<] -] « [o |- «
S0 ; g . s . s . < € X X
& :m, gl = d d : r] r . r “ e “ R >
A w w w -~ ~ ~— 5
3 - -~ s ~ L -~ 5 D 5 o 5 5 5 .
« g : 2 : 2 :
S 3 & 3 ? 3 e 3 N 3 N 5 N o~
[o] o] [o} o] [e] [0}
- (8] L (8] L. (8] L 0 = (8] = (3] =

v,

[
I
Cl &
[
o b
I
n
[
:
c2 »
:
]
1
0!
-
n
b
c3 =+
0!
<—i
Tn
C4 *
0 -
-]
T
CS *
0 e
-
n
C6 *
o}
-
T
'.r.:-r.:

v.

LAy

- e

> .

[}

»

B\

~A TS TN [P0 R P R A N P AR S W e AT TN T LT e e e e e LT T e S e e
0 ‘ .‘,,\\._,,..r ' , NSNS L AN Y St 1 .}..ra_. P S '._{.)'-'..q 2Lt

2.3. New Aggregates

All Quel aggregates have a TQuel counterpart. There are also some aggregates unique to TQuel. The

first is quite similar to avg, applying both to snapshot relations and temporal relations:

stdev The standard deviation of the set of n values present in a given attribute, defined as a measu're of
the homogeneity of the values. This operator is restricted to operate only on numeric attributes.

The remaining new aggregates are strictly temporal.

first This aggregate retums, at each point in time, the oldest value of the given attribute, that is, the
one associated with the first valid tuple. If two tuples have the same from value, one is arbitrarily
selected.

last This aggregate is analogous to first. It retumns, at each point in time, the newest value of the
given attribute, that is, the one associated with the tuple with the latest from time. If two tuples
have the same from time, one is arbitrarily selected.

avgti AVeraGe Time /ncrement: the average growth or decrease experienced by values of an attribute
over time. This aggregate is only applicable to numeric attributes in event relations. It returns a
value indicating growth per time unit, e.g., feet/hour, or dollars/month. The time unit can be
optionally specified by the user by means of the pex clause (see the syntax in the appendix):
per hour, per month. This aggregate compares the attribute value of each mple with the
attribute value of its chronologically previous tuple, relative to the time elapsed, and smooths out
all the comparisons by taking their arithmetic mean. At least two tuples are needed to compute
avgti so that the comparison can be made; when there are less than two tuples, a value of 0
results.

varts VARiability of Time Spacing: the degree of inequality of the time spacing within a given set of
events (the argument to this aggregate is an event expression evaluating to an event). This aggre-
gate returns a nondimensional quantity which has the same value for each attribute. A value of 0
indicates the tuples are perfectly spaced. This aggregate also considers the tuples in chro:.ologi-
cal order. It finds the ratio of the standard deviation of the time lengths from one tuple to the next,
to the average of those time lengths. Like in avgti, at least two tuples are needed to perform
the comparison, with a 0 resulting when two tuples aren’t availabie.

In addition, two aggregates that evaluate to valid time are available.

earliest The oldest time period of an interval relation, that is, the first from-to interval or the oldest
event, that is, the first ar event. If two wples of an interval relation have the same from
value, the one with the earlier to time is considered to be clder.

latest The newest time period of an interval relation, that is, the last from-to interval or the newest
event, that is, the last at event. If two tuples of an interval relation have the same from value,
the one with the later (o time is considered to be newer.

If no tuples are available to aggregate over (i.e., if the aggregation set is empty), then £irst and last
return a distinguished value for each datatype (e.g., 0 for integer auributes), and earliest and
latest return the interval beginning extend forever. They are called aggregated temporal

constructors because they return a time interval as their result. They can be employed by the user 1o specify

22

R Y

>

Lafi’e
t

0 .0 p b a0 5.8 B0 BV Bt pat Fyore

_1 l‘(

G %,

P F N PR g o]

<, X PR o
L J RPN

s
e

%

(’. AP

S errr T, L

s -. IR

Cl S

O L UL

I
a s
L]

EAT R ISR

-

-.-..-‘-

-~
b

A8

L N Y

L)
¥ e x

> Ay

.

conditions in the temporal qualification (when clause) or the valid time (valid clause). To adhere (o the syn-
tax of temporal expressions and predicates, these aggregates take an interval expression, rather than an a

numeric or string valued expression, as an argument.

Note that, while first and last yield (potentially) several tuples of output, first (for

aver) outputs just one tuple. The same comment appliesto earliest (for ever).

2.4. More Examples

The next example, modified from one given in [Epstein 1979], shows an aggregate in the inner where

clause of another aggregate; a case of nested aggregation:

range of £ is Faculty

ratrieve (f.Name, f.Salary)

valid from begin of f to begin of "1980"

where f.Salary = min(f.salary for each instant

where f.Salary != min(f.Salary for each instant))
when true

Example 11: Who was making the second smallest salary, and how much
was it, during each period of time prior to 19807

The output is

Name Salary | from to

Jane 25000 9-75 12-76
Jane 33000 | 12-76 9-77
Merrie 25000 9-77 1-80

Aggregates can also appear outside the target list:

range of f is Faculty

retrieve (f.Name, f.Rank)

when begin of earliest(f by f.Rank for ever) precede begin of f
and begin of f precede end of earliest (f by f.Rank for ever)

Example 12: Who were the professors hired into or promoted to a rank while
the first faculty member ever in that rank had not yet been promoted?

The two portions of the when clause specify (1) that £ was hired into or promoted after the earliest faculty
member, and (2) that the earliest faculty member had not been subsequently promoted before £ was pro-

moted into the rank.

AN

A I I U T I o 'h.-\'\\ -,x\\\‘- o NN N
A R R R AR v ui.x.\.\.\.‘a.‘\.‘h”‘h S e A A A R O Lx“.x‘._s‘._-'_\" Gy

Lo g @b g ¥ ad Val i a8 Pt el bal bah ®af Sab 4.8 V2§, M el 0l Bt aR st Yh otk 203 'y als ala'ald oid-ola-agav.gaioBiat Bab gav gat gad gab g

Firstthe earliest ineach rank is computed,

Rank earliest(f) | from 1o
Assistant (9-71, 12-76) 9.7 oo
Associate [12-76, 11-80) | 12-76
Full [11-80, 12-83) | 11-80 oo

Only one tuple satisfies the when clause, and the output is

Name Rank from to
Tom Assistant | 9-75 12-80

The when clause can be used inside an aggregate:

range of £ is Faculty

retrieve (amountct=countU(f.Salary for ever when begin of f precede "1981"))

valid at now

Example 13: How many different salary amounts has the department paid its

members since its creation until 19817

Through the use of countU, each salary amount is counted only once for each period of time. The result

is

amounict at
4 now

Note that Merrie’s initial salary of 25K is not counted, because is is identical to Jane’s initial salary.

Our last examples reference the event historical relation experiment, containing the following tuples:

experiment(Yield):

Yield at
178 9-81
179 11-81
183 1-82
184 2-82
188 4-82
188 6-82
190 8-82
191 10-82
194 12-82

24

::¢-_.\ \d.-\!.:’-,*‘-.’:’;:"-‘ .,-’-("-J_'__ AT S :I.:-! ._'..-_.:'_:’ T -...:_.:{.-:', . .-._:

" -
-\.\"-\\‘-'—'\

v

s

B JRARPRPRI

5% % % 5P O

A

AU Al L] ¥ ¥

L0 S ab tal af VAt Al e tad cat tyb tab ab Al vaboia®itatoratotaliata’ate‘ala et gty ava abuaca gl ‘e i'a s 42§V P T R R O O

range of x is experiment
retrieve (VarSpacing = varts(x for ever),
GrowthPerYear = avgti(x.Yield per year for ever))

valid at x

when true

Example 14: Given the above set of experimental data, how equally spaced are the

observations in time, and how fast is the yield growing per year?
Since we want the history, we override the default when clause. Computation of the variability of time
spacing, for any attribute, consists of (a) sorting tuples by their at attribute and (b) considering every pair of
chronologically consecutive tuples, S; and S;.,, and finding the coefficient of variation of the length of time
from event §; to event §;,,, that is,

standard deviation of <S 5[at] ~ S,[at], - - -, S;,[at] - S;[at]>
average of <S,fat] - S,lat], -- -, S;,1lat] - S;lat]>

To compute the average time increment, we (3) again sort the tuples by their ar attribute, and (b) for each
pair of chronologically consecutive twples §; and S;,,, compute the increment of the value
S; .1 [Yield] - §;([Yieid), averaged over previous pairs (for ever implies over all previous pairs), and

then normalize over a year (per year). The result is the following relation:

VarSpacing GrowthPerYear at
0.0000 0 9-81
0.0000 6 11-81
0.0000 15 1-82
0.2828 14 2-82
0.2474 16.5 4-82
0.2222 132 6-82
0.2033 13 8-82
0.1884 12 10-82
0.1764 12. 12-82

The value of VarSpacing at 2-82 is fairly iarge because the previous four tuples (at 9-81, 11-81, 1-82, and
2-82) were quite variably spaced (2 months, 2 months, and 1 month). After that point, VarSpacing
decreases with time. Since VarSpacing = 0 means that all tuples are equally time-spaced, the gradual
decrease in VarSpacing means that the observations, as time passes, are approaching uniformity in their
ime spacing. Because of the number of elements required to compute a standard deviation, VarSpacing has

a value of O before 2-82.

The GrowthPerYear at 11-81 results from an increase of 1 over two months, implying a yearly

increase of 6. The value jumps to 15 at 1-82 due to the increment of 4 over the previous two months (an

.....

PR T TR LRI PN . - M v .
S RS .- S S
B A R AN N A A

x s _r_J

PA RN

LAt

s v e
G

(Y RN

“» W B W

XL

SRl)

»

el vk YaB ‘ol 2B cal ¥al Saf Sal Tl yeB 20 4 Pat (o080’ 00 SR A 2 AR B A2 0.0 0") \f "2 2% 2'3 a‘8 a'h o'h 2%0.2'2 2% 0" 42" 4 ol el e 2*8_2%0_2"0.2"

v
{
instantancous growth of 24 per year). It then generally decreases with time, indicating that yearly yield is A
¢
growing more slowly. .
:
Sometimes the result is desired only at certain times, such as the end of the year. If relations such as
s
yearmarker(YearNumber): ‘:
Year | from o _
1970 | 170 1-71 | N
1971 | 1711 1-72 Yt
1972 | 112 1.73 e
are provided, then the following is possible: ::
range of x is experiment -
range of y is yearmarker g
retrieve (VarSpacing = varts(x for ever), -
GrowthPerYear = avgti(x.Yield per year for ever)) o
valid at end of y]
when true .
Example 15: A modification of Example 14. K,
v
resulting in the following relation: \.
N
VarSpacing GrowthPerYear at _h
0.0000 6 12-81 Q
0.1764 12.8 12-82 N
3y
®
If an analogous monthmarker relation is available, then the following statements N
o
range of x is experiment :
range of m is monthmarker .
retrieve (VarSpacing = varts(x for ever), ~Y
GrowthPerYear = avgti(x.Yield per year for ever)) ®
valid at end of m Y
where m.MonthNumber mod 3 = 0 N
when true ”
o
Example 16: Example 15 on a quarterly basis. f.
result in the following relation: 3
-3
-)'.
o
=~
26)
>
L
- !
e g e e T T e T e e T AT S e e

VarSpacing GrowthPerYear at
0.0000 0 9-81
0.0000 6 12-81
0.2828 14 3-82
0.2222 132 6-82
0.2033 13 9-82
0.1764 12.8 12-82

2.5. Defaults

Defaults must be chosen carefully to maintain the snapshot reducibility to Quel, thereby allowing
TQuel aggregates to be used in exactly the same way as Quel aggregates. Each default may be overridden
with the explicit use of the clause. There are two places where default clauses may apply: the outer
retrieve statement and within the aggregate. The defaults clauses in the outer retrieve statement without

aggregates was given in {Snodgrass 1987]:

valid from begin of (f,overlap ‘-- overlap /) to end of ({;overlap ‘-: overlap i)
where true
when ¢; overlap -°'- overlap i,

as of now

where ¢,, ..., t; are the tuple variables appearing in the query.

When aggregates are included in the query, we must distinguish between the wple variables appear-
ing inside and outside the aggregate. Tuple variables are included in the default when and valid clauses

only if they appear outside an aggregate. If no tuple variable appears outside an aggregate, the defaults are

valid from beginning to forever
where trua
when true
as of now

The following defaults are assumed within each aggregate, and are quite similar to the defaults used

in the outer query.

for each instant

where true

when (, overlap ‘' overlap ¢
as of o through f

where ¢, ..., t, are the tuple variables appearing in the aggregate, and o and B are the expressions (or their

defaults) appearing in the retrieval statement itself.

27

B e T T Y T A A T T Y L T Y G N R e T R s R R L R LR S L NI
Y {’\’5-_$‘,\ NN '-‘\- '- ‘-'\ AT ! \'-'._\,\ BT S A R A A A N NI N

R
PR, *
AT

U8 2°A a'8 a's &' '8 &R s D8t S Rl Vol Gl 8 B a0 A a0 a8 040 420 Fo0 1.8 420 Vo ol Vab ta0 Sad el val il ‘al cato’sh tal

3. Tuple Caiculus Semantics Of TQuel Aggregates

It is convenient to base the semantics of TQuel on the conventional (snapshot) relational database
model, especially because of the available mathematical foundation supporting the later [Codd 1972).

Thus the semantics of the augmented operations are expressed using traditional tuple calculus notation.

We first review the transformation of the time-specific constructs of TQuel into the tuple calculus,
and briefly give the semantics of the TQuel retrieve statement, which is needed in order 1o introduce the
semantics of temporal aggregatss. This review is a condensation of [Snodgrass 1987]. The semantics of

the TQuel aggregates is then developed.

3.1. Review of TQuel Semantics

As stated in the overview of TQuel in Section 2, TQuel augments Quel by adding a valid clause to
specify the validity time(s) of mples, a when clause to specify the relative time ordering of the participating

tuples, and an as-of clause to specify rollback in time.

The semantics makes use of several auxiliary functions: temporal constructor functions that take one
or two intervals and compute an interval, and temporal predicate functions (including overiap) that take
two intervals and compute a boolean value. All of them are ultimately defined in terms of the predicates

Before and Equal and two functions first and last.

The temporal predicate t in the when clause, containing the precede, overlap, and, or,
and not operations, is transformed into a standard tuple calculus predicate I', containing only the
Before ,Equal, k, Y, and — operations. The valid clause is transformed into the functions @, and o,
each evaluating (o an event, and containing the functions first and last. The as-of clause is in fact a special
when clause stating that the transaction times of the underlying tuples must overlap the (constant) interval

specified in the as-of clause. The constants ®, and ®p represent the endpoints of this interval from the

expressions a and B. As a consequence, the query

W I A e 4 . LIPS - - et o e 4 . .. *. S AT WL IR
,u.f_'f..z_./..f.'f\.f..-qc. "/_' e, . " . A . : p

a2
S

LR pEw

LT G 1@ T

1@

@ e L ('._

- A

"

Pl N IS

A'g b o B p A g RY,

range of(,;is R,

range of {, is R,

retrieve (;, D;, - - ,4.D;)
valid fromvto)
where ¥

when 1t
as of athroughf

is translated into the tuple calculus statement

{w‘"‘) | Gt Gt
RWDK - KR (1)
kwlll=4 [k - R wirl=1 0]
Awlr+1]=®, Aw(r+2] = ®, i Before (wir+1], w(r+2])
X w(r+3] = current transaction time A w [r +4] = co
ky’

AT,
X (¢)(1s) sk)(overlap ((®q, Dp), [4[start], 1 [stop 1))
)

The superscript indicates that the tuple w has 7 explicit attributes and 4 implicit attributes, indicating an
interval relation. The semantics for an event relation is similar, but with only 3 implicit auributes, since the

to time is not present.

EXAMPLE. Example 5, which resuits in an event relation, has the following tuple calculus semantics,

ignoring transaction time.

29

e

- -
Lo Y
o

BN D

» 0t et 8 R O 00 00 8 0008 A% 1% 0 e e s,

{w“’” | @£)X3r2)
(Faculty (f) A Faculty (f 2)
kw(l] =f [Rank]
kw{1+1) = f 2{from)
% f (Name) = *Jane" A f 2(Name) = "Merrie” k f 2(Rank] = "Associate"

X overlap ([f [from), f (t0]), f 2(from])

)} 1]

3.2. New TQuel Aggregates

Let us specify the semantics of the new aggregates introduced in Section 2.3. Let R be an event rela-
tion of degree r (recall that the degree only concems the explicit attributes) with a tuples, n > 2. These
aggregates all compute a single snapshot tuple of degree r.

DEFINITION.
S & chronorder (R) <= (Wi)1<i ISP (@G RE) Kt =S5))

X Before (S;_,[at], S;[at])

A8, qlar] = S;{at))
where || is the length of the sequence S. Each element of S is a full tuple from R, and the elements of S
are ordered by the at times of R . If several tuples in R show identical a¢ times, only one of them is taken
into . Hence, the length of S is less than orequal to n .

1 B S-S0 1 B Sialr)-Silr]
ISI-1 5 Simlar)=S;lae) |7 {IS]-1 /5 Sisilat) - Silar)

DEFINITION. avgti(R)4 [[

where § = chronorder (R) and |S| > 1. Each attribute of the result tuple equals the average increment
(positive or negative) in the values of the corresponding attribute in R, per unit of ume (the default is the
timestamp granularity, defined in Section 2). An optional per clause can be used to specify the time unit
desired; this causes multiplication of the result by a fixed conversion factor. For example, if timestamp
granularity was a millisecond and the user specified ‘‘par month’’ then the computed result is multiplied
by the conversion factor of milliseconds to months (2.592x10°) before being output.

DEFINITION. varts(R) 8 —2CR))
mean (D (R))

where D(R)4 <d,, - +d|s-1> such that § = chronorder (R),|S| > 1, implies that

Gi)(18i s|S|-11d; =S;,,lat] - S;[a)), and mean(X) and sd(X) respectively denote the arithinetic
mean and the arithmetic standard deviation of the real numbers in the set X. Each attribute of the result
tuple equals the variability of the spacing between the a¢ times among the tuples in R. This is in fact the

*al

.

>

PR AR AL

coefficient of variation of the set D (R). Note that varts returns a single value, rather than a tuple.

Observe that mean (D (R)) is never zero since S;{at] and §;,,[at] are distinct. Not necessarily all
tuples from R will make their way into S; S was so defined in order to ensure that avgti or varts will not
attempt a division by zero. Should the user need to specify which of the tuples from R has to be chosen for
the chronological order, one of the other aggregates can be used to create a temporary relation T that con-

tins the relevant tuples, and then avgti or varts may be appliedto T
Let R be an interval relation of degree r, and ¢ be a tuple variable associated with R .

DEFINITION.

sidev(R) 4 [\ﬁ T Gy- ;%(LA \[; T G- niz(3 ()

te R te R te R t€R

Each component of the result tuple equals the standard deviation of all values in the corresponding com-
ponent of the wples of R .
DEFINITION. firstagg(R) 4 ty,, whese ty,, satisfies the predicate

R(tppy) X (V2) (R Rt # 1y, =0 Before (1 [r+1), t[r+1]) Y Equal (84, [r +1], t[r +1]))
The result wple is the tuple whose valid times contain the earliest beginning time of a tuple in R, more
specifically, no other tuple in R began before t4,,,. If R is empty, {5, = (0, ..., 0, 0, o).
DEFINITION. lastagg (R) & t,,, where 1., satisfies the predicate

R{tiae) A (2t) (R(2) Rt # tyy => Before (t[r+1], t[r+1]) Y Equal (¢ [r +1], t,,[r+11))
The result tuple is the tuple whose valid times contain the latest beginning time of a tuple in R, more
specifically, no other tuple in R began after t,,,,. If R is empty, t,, = (0, ..., 0, 0, o).
The functions firstagg and lastagg directly support the aggregates first and last, respectively.

DEFINITION. earliest(R) & [teariias [frOM), Luariian {10]) WHETE £ ariiuse Salisfies the predicate

R (byartiess) N OF8) (RU) At # topiiass = Before (togpiiess [r+13, t[r +1])
. Y (Equal (teapiier [T +1], tIr+11) X (Before (t,aizaes [7 +2], ¢ [r +2})
Y Equal (tapiiee [T +2], 1 {r +2]))))

The result is the interval represented by the valid times of the earliest tuple in the relation.

DEFINITION. latest(R) 4 (tiaun (from], liaen [t0]) Where 8., satisfies the predicate

R (tigiee) A (1) (R () Rt # iy =0 Before (£[r +1], limeee [T +1])
Y(Equal (t{r+1], tieeg [r +1]) k (Before (t [r+2), tigug [r +2])
Y Equal (1 [r+2), tigee [r+2)))))

The result is the interval represented by the valid times of the latest tuple in the relation.

l'.'(\d'

A

‘-’~f r “"I"‘)’.".

S e A A N, G R CR AN O O

33. The Constant Predicate

As we have seen, aggregates change their values over time. This will be reflected as different values
' of an aggregate being associated with different valid times, even in queries that may look similar to Quel
: queries with scalar aggregates, in which no inner when or as-of clauses exist (recall the default clauses
from Section 2.5). In TQuel, the role of the external or outer where , when and as of clauses will be simi-
lar to that of the outer where in Quel: they determine which tuples from the underlying relations participate
4 in the remainder of the query. These selected tuples are combined with the tuples computed from the

aggregation sets to obtain the final output relation.

; Aggregates always generate temporary interval relations, even though an aggregated atribute can
appear in an event relation. The interval relation h_s exactly one value at any point in time (for an aggre-
gate function, the interval relation has at most one value at any point in time for each value of attributes in
the by list). It is convenient to determine the points at which the value changes. Let us first define the time-

. partition of a set of relations as

T(Rl.....R,,w)g{s LG r)&iEe)
(1<SiSkiR(r)A(s=ri{from)Ys=r(to]Ys =1)
M-w(t)=rlto] X e’ t" > t,t"-w(t") > rito])

oH]

where w is an arbitrary function that maps each time ¢ into its aggregation window size, with the single

KW Wy s

restriction that w(t+1) Sw(¢)+1. The time-partition brings together all the times s when an aggregate in
which the relations R |, ..., R,, mentioned in an aggregate, could change value. These times include the

beginning time of each tupie, the time following the ending time of each tuple, and the time when a wple

Ry

no longer falls into an aggregation window. The window function w is specified in the for clause. for
each instant implies V¢, w(t)=0; for ever implies ¥/, w(t) =0, and for each < time unit>
A implies a window size dependent on the timestamp granularity. In the examples, a granularity of month has
been used. Hence, for each month is equivalent to for each instant (Yt,w(t)=1-1=0);

for each quarter implies V¢, w(t)=3-1=2; and for each decade implies ¥

; 32

4
« .- . - - - - - . - e e - ~ et S R R A ST NI
. v 'J"'-".-:'.'-F\' P P A N A N N N A N N o A A O S RN WA C i

9a@ A8 020 'ab fal. 2ty At afs g At A 4 vy o AR AN - + Gl el $o8 vl o 0,0 &0 S 2’0 8" J Yy Wy

- - -

-

t,w(t)=120-1=119. One is subtracted because the window is inclusive (see Section 2.2). If, however, a

- -

granularity of day is used, for each month, for each quarter, and for each decade
would require non-constant window functions. For example, for each month would require

\ w (January 31, 1980) = 30 and w (February 28, 1980) = 27.

If two times ¢ and d are neighbors, i.e., in T(R |, ..., Ry, w), the time interval from ¢ to d did not

witness any change in the set of relations, or in other words, all the relations remained ‘‘constant’’. Define

then the Constant predicate as

Constant(R |,,Ry,c,d,w)<=>c € TRy, ...R, W)
kde T(Ry,...,R,w)
ke #d
Xk Before (c,d)
K(teXe € T(Ry.,...,R,.,w) => Before (e,c)YEqual (e, c)
Y Before (d,e) Y Equal (d, e))

i In this predicate, the last line means that there is no event in the time between ¢ and d. The constant predi-
cate will allow us to treat each constant time interval [¢, d) separately, thus reducing the inner query to a

number of queries, each dealing with a constant time interval. In other words, we will be able to follow the
same steps as in the snapshot Quel case. For each time interval { ¢, d) given by the constant predicate a

. value of the aggregate, valid from ¢ to 4, will be computed and will potentiaily go into the result. This

value is guaranteed to be unique by the definition of Constant.

EXAMPLE. For the Facuity relaton, only for the following values of ¢ and d is the

Constant (Faculty, c . d, 0) predicate true (implying for each instant):

s s a0

l."'

33

’ '~”\ ‘\1 "‘wl‘- - v’\{v'v\

r
(8
;
»3
c d ':
0 9'71 .
9-71 9.75
9-75 12-76 ¢
1276 9-77 !
9-77 11-80
11-80 12-80 : ’
12-80 12-82 G
12-82 12-83 "
12-83 oo
o
Note that these consecutive intervals are exactly the ones indicated in Figure 1. For a moving window of :
A
for each quarter, we would use the window function w () = 2, resulting in 08
!
c d -
0 971 :
9-71 9-75 “
9-75 12-76 :'
12-76 2-77 o
2-77 9-77 .
9-77 11-80 ;
11-80 12-80 W,
12-80 1-81 X
1-81 2-81 N,
2-81 12-82 N
12-82 2-83 N
2-83 12-83 0
12-83 2-84 ,.
2-84 oo o~
i R
3.4. Aggregates in the Target List :?
e
For a multi-relational query with one aggregate in the target list, we will take the approach used in '.::
2
the Quel semaniics: tuples from the aggregate operation will be computed first via a partitioning function. o)
S
Again, let F be any of the aggregate operators defined so far. Consider the TQuel query with one aggre- .
-9
gate function in the target list, ::_
-
_: \
o
9
34 ¥
:.r
L]
o
>
- \}‘,\f:'-::..&."‘:,.;.:;_;}_;f;"-"- R, A ,- ,_ ,.,. _ .._I"/\«'_ ORI -_J'_ NS -r,‘ _' ,.:\ ﬁr,.d' o le, oy

range of(, is R,

range of(isR,
retrieve (l,".Dj', . l,-,.Dl". y= F(f,l.D,h by fl,.D,-., ceen lL.D,,._
forw
where ¥,
when T,
as of a; through§,))
valid fromvtoy
where y
when T
as of athroughf

in which
1<i,Sk,..,15i, sk
1<l,8k,..., 181, sk

1<j,<degR;), ... 1<), Sdeg(R;)
1< m;s deg (R[I), w1 S m, < deg (Rl.)'

As with Quel, the where predicate should refer only to the tuple variable ¢, or the tuple variables appearing
in the by clause. The same restriction holds for the when clause appearing in the aggregate (no tuple vari-

ables are permitted in the as-of clause).

Here, the pantitioning function will be based upon the four clauses that modify the aggregate (the by,

where, when, and as-of clauses). Hence, using the same notation as in Section 1.3,

1 P(az,...,a,,c,d)g{b ©i1Gy) -- Gu)

2 Ry ()R - KRt

3 Roll=4 1)K --- Xblp) =1 [deg (R)]

4 hylmal=ask - kylm,]=a,

5 gy’

6 kT,

7 R h)(1sh<n) overlap ([Dq,, Pp), (1, [start], 1, [stop1))
8 kK(h)(1shsn) overlap ([c, d), (4, (from], ¢, [to }+w’(c)))

9)

35

.............

Pb e 0 gat paB Bt 9ut g yot ot 4a® ga 0a’ At et 94t ¥a' o0atbat iyt [T & T 2'R 'k b’ 08 Valk tab Sah ad bava'al tal. gil g : ~ale af a val al .
. . D)

]

SRR JARRAAY

"
where ¢ and d are valid times, with Before(c,d) and p = [E(deg (RL)]-M (p includes the implicit atri- ;
i=] -
butes of ¢, only). This definition assumes that the tuple variables 1,,, ..., ¢, are distinct. If they are not, then
~
the duplicate tuple variables should be removed. In comparing this with the Quel partitioning function, Y,
notice that there are three additional lines here. Line 6 translates the when clause. Line 7 translates the as-
of clause, specifying that the transaction times of all tuples of the inner query, including those in the inner o
where and when clauses, must overlap the rollback time specified in the as-of clause. This is similar o the
as-of line in the outer query in TQuel. The window function @’ in line 8 corresponds o the keyword @ :
o4
found in the retrieve statement. Line 8 indicates that all tuples participating in the aggregate must overlap
the interval [c, 4) (from the definition of the Constant predicate, which will supply the intervals {c, d), it is .
not difficult to see that the overlapping is total.) This way, aggregates will always be computed from the .
I
tuples that were valid during that interval. In determining the overlap, the window function ®” is used in a o
[)
similar fashion to the definition of the time parttion. If R, in line 8 is an event relation, the predicate 4
should be ;
overlap (¢, d), (1,[at], 1, [at +0"(c))) .
The output relation from a query with a single aggregate in the target list is t
4
-
\1
X
N
o
7
o,
36 p
A
®
<
e R N 2 o o o e e 0

L

A A8

TR

“p*y t ‘& ats ald av%" WA LU WUNLW Ve V8 a0a W WU WINU N

1 {w“’*"“’ I Gty - Gu)Ge)Gd)

2 (Ry(¢) 4 -+ XRy(4) X Constamt R, , ... R, c.d, ")

3 K (¢ L,)(1<i <n Yoverlap ([c , d), [1,[from], 1,(101)))

4 Awll=40JA - Awlrl=4 (]

5 Rwlr+1]=F (P (t,Im,], ..., 4, [m,], ¢ ,d))[m,]

6 hwlr+2]=last (c, ®,) kwlr+3] = first (d, ®,) k Before (w(r+2], w[r +3])
7 Aw(r+4) = current transaction time A w [r+5] = o

8 Ay’

9 Al

10 R (¢1)(1sl <k) (overlap ((Dq, ©p), [1[start], 4(stop])))

11)}

A comparison with the tuple calculus expression given in Section 3.1 reveals that lines three and five are
new and lines one and six are altered. The Constant predicate determines the interval [c, d) during which
the tuples are constant. It involves the relations appearing in the aggregate; the relation whose attribute is
being aggregated plus all the different relations in the by-list; other relations cannot affect the aggregate.
Again, these relations are assumed 1o be distinct for notational convenience. The window function ®’
appears explicitly as an argument to the Constant predicate and implicitly in P. Line three ensures that the
tuple variables aggregated over and those specified in the by clause overlap with the interval during which
the aggregate is constant. Line five computes the aggregate. Line six ensures that the valid time of the
result relation is the intersection with the specified valid time and the interval [c, d). Two slight
modifications are required for special cases. If the valid at v variant is used, line 6 should be replaced
with
w(r+2) = ®, doveriap((c, d), [w[r+2), w[r+2]+1))

Sccondly, as with the Quel semantics, if ¢, does not appear outside of the aggregate or in the by clause, it

should also not appear in lines 1 and 2 (it will appear in the Constant predicate). Also, tuple variables

37

S MR

AT et . . L T A S I P T Y o S RN T
"‘-'.\..-,_... L A o . " LA I IS4
o o - AR . tu .

Lath 8'h o8 o' 805" 00 0" b.a" Aal’

mentioned in the aggregate that do not appear outside the aggregate should not appear in line 3.

EXAMPLE. Let us translate Example 6 into the tuple calculus.

P(a,,c.d)’é{b""” | Gf)
(Faculty ()
Xb=f
X f (Rank]=a,
Koverlap ([c, d). [f [from), f [t0}+0))

)

A window size of 0 is used because the default is for each instant. Some instances of the values

of this function are

P (Assistant, 9-71,9-75) = {(Jane, Assistant, 25000, 9-71, 12-76)}

P (Assistant, 9-75, 12-76) = {(Jane, Assistant, 25000, 9-71, 12-76),
(Tom, Assistant, 23000, 9-75, 12-80))}

The output relation is

{W‘m’ &rGe)gd)
(Faculty (f) k Constant (Faculty,, ¢ . d, 0)
X overlap([c,d), [f [from], f [t0]))
Xw(1]=f [Rank]
X w (2] = count (P (f [Rank], ¢, d)(Name]
kw(3]=last(c,f from]) kw(4] = first(d, f (t0)) R Before (w(3], w (4])
K overlap ((f [from), f [t0}), [now, now+1))

)

The last two lines correspond to the default valid and when clauses. |||

38

ATy S L S TN R R g I TR I R P ST N S S N ST
L R e e MR AL S L A SN

. ~ oy
WYX

Ve

For an aggregate with no by-list, only the where, when, and as-of clauses may be present, and the

partitioning function P becomes again a subset of R, :

P(c.d)= {b(” L (R\(B)Aw, ATy,
X Before (b[start), @) X Before (®q, b [st0p)
Koverlap ([c,d), [b[from], b[to]))
J
The tuple calculus statement for the query remains the same as above, except that P (c, d) is used in place.
of P (,,lm,], ..., 1, [m,],c,d) and only R, , ¢, and d are needed as arguments to the Constant predicate.
The semantics is changed only slightly if either the underlying or result relations are event relations.

EXAMPLE. This is the tuple calculus version of Example 14 from Section 2.4.

P(c,d)g{b““’ | (3 x) experiment (x)
Ab=x

K overlap ([c , d), [x [from], x [10]+<2))

}

{w‘z*” I Gx)}dc)3d)
(experiment (x) k Constant (experiment , ¢ , d,)
Aoverlap (Ic, d), [x(at], x [at]+1))
Aw({ll=varts(P(c,d))Aw(2] =119 -avgri (P (c,d))[Yield)
Aw (3] =xlat) koverlap ([c,d), [w[3]. w(3]+1))

)

The multiplier of avgii is discussed in Section 2.2. |[l|

39

¥ 1;! \‘_' (o ._:f.{' T P T R S T A i T T Ry \- .‘- ._- .‘- \~ _:.-_-.-_- TN e A T T T T
Chdid ekl - . A

P T e P e P T e

.........

"

A

SRR A

'.'.ﬁ’\“‘ a_"
P) e

v "s e

N YA IPy

DAL J AR EAD SRR,

]

q. 4 v\ :" ...

LA A,
- e

X

ey,
% Tz

gy N

i
”

S v @

3.5. Unique Aggregation

Unique aggregation is also possible in TQuel. There are four unique aggregates: countU, sumy,
avgU,and stdevU. It is not necessary to define unique versions for any, max, min, £irst, last,

avgtiand varts, because the same results can be obtained with the non-unique aggregates.

As in Quel (c.f., Section 1.4), the semantics of unique aggregation utilizes an additional partitioning
function U defined in terms of the original partitioning function P. When the inner query has a by-list, the

modified partitioning function is defined in terms of the ordinary P as

U@y,a,, ¢, d)= {u W Gb)beP(ay...ac,d)hull] =b[m1])}
With no by-list, the modified partitioning function U (c,d) is similarly defined from P (c,d). In either
case, only the explicit attributes remain in U ; the implicit time attributes are not copied into U . The simple
substitution of U for P in the final tuple calculus statement, together with the use of the non-unique ver-

sions of the aggregates, yields the tuple calculus semantics of unique aggregates.

EXAMPLE. The partitioning function for Example 13 is

P(c.d)= {b‘“’ rarn
(Faculty (f)
Xb=f
X Before (f (from),”1981"[from))
X overlap ([c , d), [f [from), f [10]+<o)

)

Ule,d)= {u“’ 1@b)b e P(C.d)Xu[l]=b[Salaryl)} il

3.6. Muitiple Aggregation

A TQuel query may call for several aggregates, some of them instantaneous and some others cumu-
lative, potentially over different window sizes. Of course, each of the aggregates is computed from its own

partitioning functions, using the appropriate window size. The Constant predicate is replaced by a similar

40

RS N NN e LT “ : - - . L I T .
N J'. S T e e AT Pt et e i T g Y S N T Y Y L NN

T W N L ANy

i T T e

.'_..5‘;'!"

2

A

Cevle

.
.
Py

S . "' 'n'--'

‘e
\

e

X

(R

)
K
B . . .
,:: predicate employing multiple time-partitions T;, 1<i<a, each associated with one of the n aggregates:
!\l
Qi.lsisn)3j.1sjsa X
0! C € T}(Rl, ""Rk' Wi)
> Xd e Tj(Rl""ORk' WI)
kc #d
X Before (c,d)
o K(Fe)(Wi,1si<n)
(e € T(R 1 eoer Rk’ Wl) =

i Before (e,c)YEqual (e, c)YBefore(d,e)Y Equal (d,¢))

\
5)

')

: : Each T; can either range over all of the relations appearing in any aggregate, or can range over only those
DX

) relations appearing in the specific aggregate associated with T;. When there is only one aggregate, this
2 predicate is identical to the Constant predicate.

-

I Valid times for each output tuple are computed by following the same approach as before: each out-
W

.’ put wple is valid during an interval when tuples from all the non-aggregate attributes are in the [©,,®,)
-\. interval, and this interval overlaps the valid times of the calculated aggregates.

N
B -

N 3.7. Aggregates in the Outer Where Clause

. TQuel aggregates, or arithmetic expressions containing TQuel aggregates, may be part of the main
Cal

:; where or when clause. Through the partitioning functions, the values of the aggregated attribute are first
o~

- computed, then used in place of the aggregate in the predicate of the query. Since the variables in by-lists
' are *‘global”’, its by clause is linked to the rest of the query, as in Quel.

N'

"

_‘:. 3.8. Nested Aggregation

\‘
e In nested aggregation, the local where clause of an aggregate F, invokes another aggregate F,. If F,
.: has a by-list, links are established between the tuple variables in the by-list of F and the tuple variables in
i the F; query. The Constant predicate in the retrieve statement is replaced with the predicate over multiple
]
1)

lime partitions given in Section 3.6.

E EXAMPLE. Example 11 contains a nested aggregate. Let us show the partitioning functions P, and P, for
: the outer and the inner aggregates respectively:

1

-
Pl
L)
> 41

<

Y

»
-I' s o et Ll e N N P i A A N A AN e PO A A A AN N ST AN

YOO WO Y VY VY

P\(c.d)= {b(m) V&) (Faculty (f)

Kb=f

X f [Salary] # min(P 5(c ,d))}(Salary]
Koverlap ([c,d), [f [from), f [10]+0))
)

Py(c.d)= {b‘m’ V&S) (Faculty (f)

Kb =f

Xoverlap ([c, d), [f {from], f [to]+0))

)

The tuple calculus statement for the retrieve statement will contain P (¢, d); P 5(c, d) only occurs within
P . In this case, both aggregates were for each instant. Different window functions are accommo-

dated by using the appropriate window function in each partitioning function, and by referencing all win-

dow functions in the predicate replacing Constane. |l v
3

3.9. Aggregates in the Other Quter Clauses o
Two aggregates may be used in the when and valid clauses: earliest and latest. Just like in ~

the case of aggregates in the where clause, an aggregate that is used in the when clause can be modified o

with inner by, for, where, when, and as-of clauses. With these restrictions, the semantics of the aggregated
temporal constructors is the same as that of the other aggregates. For the linking of tuple variables, the
same comments in sections 3.7 and 3.8 concerning the outer and inner where clause apply. Being based on hY
first and last (c.f., Section 3.1), there is no need to define unique versions of the aggregated temporal con-

structors.

EXAMPLE. Example 12 illustrates this point.

~

i gt gl g%, gi, g¥ ¥ b el g6 at ol et aB. a¥ gt sl Vat ‘sl val Vsl 'al sl ‘2t ‘al ¥af ‘sl ‘e al %atl ", 4 el Yaty'ad taf i 0 tah Y, U OV AW LR U U U LA

P(az.C.d)%{b(m’ I &f) (Faculty(f)
Kb=f
kf(Rank]=a,

X overilap ([c , 4), [f [from), f [10]4+9))

}

P (Assistant, 9-71, 9-75) = ((Jane, Assistant, 25000, 9-71, 12-76))

The relation resulting from the query is

{wa"z’ L @f)Geaad)
(Faculty (f) X Constant (Faculty , ¢, d , =)
Roverlap(ic, &), [f [from]}, f [to1))
Aw(l]=f[Name] kw[2] = f [Rank]
Aw(3)=last(c, f [from]) A w(4] = first(d, f [t0]) A Before (w[3], w(4])
A Before (earliest (P (f [Rank), ¢, d)){from), f [from})

X Before (f [from), earliest (P (f [Rank], ¢, d))[t0))

)

The fifth line originates from the default valid clause, which in this case is valid from begin of £
to end of £. That the cumulative version of the aggregate was specified in the TQuel query is

reflected in a window size of .. [l

4, Related Work

As was mentioned in the introduction, most conventional query languages include support for aggre-
gates. There has also been some formal work on aggregates. Klug introduced an approach to handle aggre-
gates within the formalism of both relational algebra and tuple relational calculus [Klug 1982], His method

makes it possible to define both standard and unique aggregates in a rigorous way. Ceri and Gottlob present

43

X s Y J'" X " “'}'d‘f v"- "? . v v ""‘-"\u"\}. o ; I"'; "!'#? -': P AT AE AT LR) Lo el 'J'_:-r

I--.

PP)

44
Ty W - L N N AN A i o T e N R T S R ERC TR S AR ST I R e
AN T AN A S S O R LI S AT A T T T - T T
Sﬁ:‘.r..e. ‘:..',‘.';}m..ﬁ....r:'..-ft.;‘.g:‘..?-..r_'.u. P I I A R I T o A IR, S R o

ol ud f g 0.0 0.0 6.8 La" b 00000 0.00.0'A.2'0.8%.2"0 2", ‘o,

“alA"ata’olieafa’ aNa® hatolat ' Seb A (3 8 _gat Cadat

a translation from a subset of SQL that includes aggregates into relational algebra, thereby defining an
operational semantics for SQL aggregates [Ceri & Gottlob 1985). Also, significant progress has been made
in the area of statistical databases [LBL 1981, LBL 1983]. Such databases, used primarily for summary
statistics gathering and statistical analysis, contain set-valued attributes. Klug’s relational algebra and cal-
culus have been extended to manipulate set-valued attributes and to utilize aggregate functions [Ozsoyoglu,

et al. 1986}, thereby forming a theoretical framework for statistical database query languages.

Aggregates may also be found in several of the dozen query languages supporting time that have

appeared over the last decade. In some of these languages, aggregates play only a small role. Ben-Zvi

included several aggregate operators and functions in his TRM language, although not in a very clear or’

comprehensive manner [Ben-Zvi 1982]; Ariav also mentioned aggregates in the context of his TOSQL
language [Ariav 1985]. Although Gadia’s HTQuel language does not explicitly include aggregates, his
*“‘temporal navigation’® operators (e.g., First) can be simulated using aggregates, since they effectively

extract an interval from a collection of intervals [Gadia & Vaishnav 1985].

Finally, four other languages supporting time include a comprehensive set of aggregates and associ-
ated constructs. Legol 2.0 was one of the first time-oriented query languages to appear [Jones et al. 1579).
This language is based on the relational algebra. HQuel, an extension of Quel, is based on a model incor-
porating set-valued, time-stamped attributes [Tansel & Arkun 1986]. TSQL is an extension of SQL [IBM
1981] incorporating valid time (Navathe & Ahmed 1986]. The operations over the time sequence collec-
tions of the temporal data model (TDM), presented in an SQL-like syntax, include AGGREGATE and
ACCUMULATE statements {Segev & Shoshani 1987].

In the remainder of this section, these three query languages will be compared with Quel and TQuel
against a set of criteria. These eighteen criteria were chosen because they are weil-defined, are independent

of any specific query language, and are demonstrably beneficial. Table 1 summarizes the comparison.

-

LSO

g

v“YSI

PN JARAEN

'{'{"l'-l" .. DRy Ay Ay Ny “..*.

2

FERRAAAL)

[Ny
.
R ".

Yy v
LI

y 4

F g R BN L.

P @

- v

P XA

@ g

'y

.-‘v

J".'u’-/'

()

4

) (N .

R U PO PR P TN PUR PO PO YO YOO YO VO U WO WA W) § 2.0 B0 220 3oV g0 pat gt pob S AaU 8t fat Bat st B gat st We-

Table 1: Comparison of Query Languages Supporting Time

—

HQuel

e
~
(o

Criterion TQuel

0O

Formal Semantics Provided
Aggregates in Outer Selection
Selection within Aggregates
Aggregates on Partitions

Nested Aggregation
Multiple-relation Aggregates
Operational Semantics Provided
Implementation Exists

Unique and Non-unigue Aggregation

Temporal Partitioning

Temporal Selection Within Agg. Over Valid Time
Temporal Selection Within Agg. Over Trans. Time
| Aggregates In Quter Temporal Selection

Instantaneous Aggregates
Cumulative Aggregates
Moving-window Aggregates
Temporally Weighted Aggregates

[R S I O B R | !(4&(44(44@

<Qe<w|a<< <DD¢<<<’<08

2222 e|e e yle et

<. O0=<<|<0<0 U-¢<<<<<<DL§

<<0<«0l~0-~0l~vg<«< v e v

| Aggregates over Chronological Order

<0O~><w CIL‘.<<<DD<D<D'UC]§

v satisfies criterion

P partial compliance

O criterion not satisfied
? not specified in papers
- not applicable

These criteria arise from three sources, the first being aspects that apply to most conventional aggre-

gates, and hence should be satisfied by proposed temporal aggregates.

» The aggregates should have a formal semantics. Without a formal definition, the meaning of each con-
struct, and the interaction between constructs, is unclear. Only Quel and TQuel aggregates have been for-
mally specified, both in this paper.

o Aggregates in the outer selection should be supported. Quel, TQuel, TSQL and perhaps HQuel (the
feature isn’t mentioned in the paper) permit aggregates in the selection construct, in this case, the where
clause. Legol permits aggregates in any expression, including comparisons. TDM permits a very limited
collection of aggregates in the where clause.

¢ Selection within aggregates should be supported. Quel allows a where clause within an aggregate to
specify a subset of tuples over which the aggregate is computed. TQuel also permits such a where clause,
and HQuel may. Legol allows aggregates to be computed over any relational expression. TSQL introduces
a new construct, HAVING, to specify nested selection. TDM doesn’t allow a where clause in the AGGRE-
GATE or ACCUMULATE statements.

* Aggregation on partitions should be possible. Quel, TQuel, and HQuel use the by clause, and TSQL and
TDM use the GROUP BY clause, to specify partitioned aggregation. Legol does not include such a con-
struct.

* Nested aggregation should be supported. Quel, TQuel, TSQL, Legol, and perhaps HQue! support aggre-
gates whose arguments are themselves aggregates; TDM does not.

» Multiple-relation aggregates should be supported. Quel, TQuel, and HQuel permit several tuple variables
(o appear in an aggregate. Legol, TSQL and TDM perform aggregation over arbitrary expressions, thereby
accommodating multiple relations.

45

“‘j'l')‘\"’l'\‘\"'.'\.l‘-\‘t q\"‘W'n\-\'\'-"-'i"'\'q'-'\'-q‘h\'-'\\'\ ‘I\‘
L g Lol .\ MRS » "*'("" - 4 ""‘ "*' ot ‘- " e "“‘*‘r"-‘-‘{ 7 ‘. -'-(I‘ '\{

I.{-"l.

DRI 7.

l'. .‘- ",.',"‘. “.'- 'A'W.

% " “e v

TUNST R

@ 27270 0@ el NQ T s

h

Nagt

G at o et At At a8, at tal. at_ a2t _‘pl_“a9 ‘sl _‘at *at y 1/ N Aag < », DV) et valy” igl tag Vo v RV}

« Aggregates should have a well-defined operational semantics. By this we mean that a formal temporal
algebra including aggregates should be defined, and a mapping of aggregates in the language 10 algebraic
expressions should be provided. Klug showed how aggregates can be handled within the relational algebra
and calculus (Klug 1982]; his approach can be applied to Quel to satisfy this criteria. A temporal relational
algebra has been defined that supports the TQuel aggregates, including aggregates in the target list, inner
where and when clauses, and outer where, when, and valid clauses [McKenzie & Snodgrass 1987A,
McKenzie & Snodgrass 1987B). A different algebra supports HQuel's aggregates [Tanse! 1986). Legol is
itself an algebra. While an algebra is defined that supports TSQL, this algebra does not include aggregates
[Navathe & Ahmed 1986). TDM does not have an equivalent algebra.

= An implementation of the aggregates should exist Quel aggregates have been implemented in the Ingres
DBMS. An early version of Legol has been implemented, but it is not stated whether aggregates were
implemented in this prototype. No other proposal has been implemented.

« Unique and non-unique aggregation should be supported. The latter is useful to avoid incurring the over-
head of sorting the relation before aggregation to remove duplicates. Quel, TQuel, TSQL, TDM and
perhaps HQuel support both unique and non-unique aggregation. It appears that Legol supports only
unique aggregation.

The second source of evaluation criteria are aspects of conventional aggregates that can be extended

in an obvious fashion to apply to time.

« Temporal partitioning should be supported. This feature, analogous to aggregates partitioned on the expli-
cit attributes, was also first intreduced in TSQL via the GROUP BY construct [Navathe & Ahmed 1986].
It is similar to the moving window (see below), except that the window is fixed. TDM has an analogous
GROUP T BY construct. This feature can be simulated in TQuel by using auxiliary relations, as discussed
in section 2.4. No other query language supports temporal partitioning.

« Temporal selection within aggregates over valid time should be supported. This featre, analogous to
conventional selection within aggregates, is supported in TQuel and TSQL via a when clause tha: specifies
a subset of tuples, based on when the mples were valid, over which the aggregate is computed. Legol
allows aggregates 10 be computed over any relational expression. HQuel may, and TDM does, support tem-
poral selection through temporal operators in the where clause.

» Temporal selection within aggregates over transaction time should be supported. While only TQuel sup-
ports this feature, it appears that an as-of clause could be added to the other languages fairly easily
{McKenzie & Snodgrass 1987C].

« Aggregates in the outer temporal selection should be supported. Again, this is analogous to supporting
aggregates in the outer conventional selection. TQuel, TSQL, and Legol support this feature. HQuel does
not include any aggregate operators that operate directly on time stamps. In TDM, AGGREGATE is a
separate statement from SELECT.

The final source of evaluation criteria are previous papers on aggregates that introduce desirable
features. The relative importance of these and other potential features will emerge only with further work
in this area.

* Instantaneous aggregates should be supported. These aggregates yield a distribution on the time axis,
where the value of the aggregate at instant ¢ is computed from tuples valid at time ¢ {Jones et al. 1979).
Both Legol and TQuei support such aggregates. They can be approximated in TSQL and TDM by using a
very small moving window. Instantaneous aggregates cannot be specified in HQuel.

* Cumulative aggregates should be supported. These aggregates compute a value at each time ¢ from tuples
valid at or before time ¢ [Jones et al. 1979]). In this comparison we differentiate between strict cumulative
aggregates, as defined by Jones, et al., and moving window aggregates, as defined by Navathe and Ahmed.
TQuel, Legol, TSQL, and TDM support cumulative aggregates. In HQuel, all aggregates are cumulative.

46

R T I T T T A s e A A - L
o AR Y N R - N A NN LN LN L

AT NN

.

I

5 ‘-‘. (LN

e pssss

A L
s et

AR

"_"n.

\ « Moving-window aggregates should be supported. These aggregates compute a value at each time ¢ from
) tuples valid sometime during the specified window interval ending at [Navathe & Ahmed 1986). This
- feawre was originally termed ‘‘moving time-window’’. TQuel and TSQL fully support moving-window
aggregates; TDM may support moving-window aggregates through the GROUP T BY construct; and the
other query languages do not support this language feature.

* Temporally weighted aggregates should be available. Tansel introduced the concept of an average
weighted by the duration of the values {Tansel & Arkun 1986); the concept was also briefly mentioned

elsewhere [Snodgrass 1982). TQuel's avgti aggregate serves a similar purpose. The other languages
doe not provide such aggregates.

« Aggregates over the chronological order of tuples should be avaxlable The first and last aggregates of
Legol have been included in the other languages.

In summary, TQuel’'s aggregates meet all but one criteria (the exception being an implementation);
the other query languages are all lacking in several criteria.

§. Conclusion

This paper makes three contributions. First, a formal semantics for the conventional query language

Quel was presented. This completes the formal definition of Quel (the core of the retrieve statement and the

modification statements were previously formalized [Snodgrass 1987, Uliman 1982]).

Secondly, the aggregates in Quel have been extended in a minimal fashion for inclusion in TQuel.
TQuel added the when and as-of clauses, which are the temporal analogues for valid and transaction time,
respectively, to the where clause. These clauses are permitted within the aggregate. The other syntactic
extension is the for clause, used to distinguish between instantaneous, cumulative, and moving window

aggregates. Additional temporal aggregate operators were also introduced.

Finally, the Quel tuple calculus semantics was extended 10 accommodate time-varying relations. Our
\ approach used the Constant predicate and a partitioning function to determine those intervals over which a

relation remains static, enabling the aggregate value to be computed in a conventional manner.

The result is a complete formal semantics for TQuel and its snapshot subset Quel. A complete formal

el 27 W Jur

semantics for no other relational query language, temporal or otherwise, has been defined.

Acknowledgements

Pl ek N B &

We are grateful to Peter Bloomfield for his remarks on the requirements of experimental data in sta-
: tistical time series that lead to the creation of the varts operator, and to Ilsoo Ahn, David Beard, and
L Juan Valiente for helpful comments on this paper. This work was supported in part by NSF grant DCR-
8402339, by ONR contract N00O14-86-K-0680, and by a Junior Faculty Development Award from the
UNC-CH Foundation. The first author was supported in part by an IBM Faculty Development Award. The
third author was sponsored in part by the U.S. Air Force.

47

'."' .

"‘f‘.‘ ,r, '., - ~. (‘o ,4';. .:_-: ‘:’ 'J' -. ‘- ':'-\‘,\.' ‘:J'\-’_’ -\." J"' - - - f\f\ N \-\- \-\. ‘.\ N ‘:‘--'._..:\-:‘_-'..":\-'..- ._.:\I‘....‘-.\

-

7

.

References :'.:
A
{Ariav 1985] Ariav, G. A Temporally Oriented Data Model. Technical Report. New York University. Mar. N
198s. >
[Ben-Zvi 1982] Ben-Zvi, J. The Time Relational Model. PhD. Diss. Computer Science Department, UCLA, 5
1982. >
(Ceri & Goulob 1985] Ceri, S. and G. Gottlob. Transiating SQL Into Relational Algebra: Optimization, ,
Semantics, and Equivalence of SQL Queries. IEEE Transactions on Software Engineering, SE-11, N
No. 4, Apr. 1985, pp. 324-345. -~

{Codd 1972] Codd, E. F. Relational Completeness of Data Base Sublanguages, in Data Base Systems. Vol. ’
6 of Courant Computer Symposia Series. Englewood Cliffs, NJ.: Prentice Hall, 1972. pp. 65-98 . "

(Date 1983] Date, C. J. An Introduction to Database Systems. Yol. Il of Addison-Wesley Systems Pro- ' !
gramming Series. Reading, MA: Addison-Wesley Pub. Co., Inc., 1983. ::_

[Epstein 1979] Epstein, R. Techniques for Processing of Aggregates in Relational Database Systems. X
UCB/ERL M7918. Computer Science Department, University of California at Berkeley. Feb. A,
1979. ®

)

(Gadia & Vaishnav 1985] Gadia, S.K. and J.H. Vaishnav. A Query Language for a Homogeneous Tem- ::'_
poral Database, in Proceedings of the ACM Symposium on Principles of Database Systems, Apr. AR

[1985S. N

{Held et al. 1975) Held, G.D., M. Stonebraker and E. Wong. INGRES--A Relational Data Base Manage- B
ment Sysiem. Proceedings of the AFIPS 1975 National Computer Conference, 44, May 1975, pp. @
409-416. -
._: A
[IBM 1981) IBM SQL/Data-Sysiem, Concepts and Facilities. Technical Report GH24-5013-0. IBM. Jan. -3
1981. ..

(Jones et al. 1979] Jones, S., P. Mason and R. Stamper. LEGOL 2.0: A Relational Specification Language ..
for Complex Rules. Information Systems, 4, No. 4, Nov. 1979, pp. 293-305. -

)

(Klug 1982] Klug, A. Equivalence of Relational Algebra and Relational Calculus Query Languages Hav- -
ing Aggregate Functions. Journal of the Association of Computing Machinery, 29, No. 3, July s

1982, pp. 699-717. -
(McKenzie & Snodgrass 1987A] McKenzie, E. and R. Snodgrass. Scheme Evolution and the Relational —-.
Algebra. Technical Report TR87-003. Computer Science Department, University of North Caro- B

lina at Chapel Hill. May 1987. -1
[McKenzie & Snodgrass 1987B] McKenzie, E. and R. Snodgrass. Supporting Valid Time: An Historical)
Algebra. Technical Report TR87-008. Computer Science Department, University of North Caro- o
lina at Chapel Hill. Aug. 1987. o

(McKenzie & Snodgrass 1987C] McKenzie, E. and R. Snodgrass. Extending the Relational Algebra (o :
Support Transaction Time, in Proceedings of ACM SIGMOD International Conference on
Management of Data, Ed. U. Dayal and . Traiger. Association for Computing Machinery. San
Francisco, CA: May 1987, pp. 467-478.

(Navate & Ahmed 1986) Navathe, S.B. and R. Ahmed. A Temporal Relational Model and a Query
Language. UF-CIS Technical Report TR-85-16. Computer and Informauon Sciences Department,

Tw e L

‘e DR . “e
R R S Ny

......

University of Florida. Apr. 1986.

[Ozsoyoglu, et al. 1986] Ozsoyoglu, G., Z.M. Ozsoyoglu and V. Matos. Extending Relational Algebra and
Relational Calculus with Set-Valued Attributes and Aggregate Functions. Technical Report.
Department of Computer Engineering and Science, Case Western Reserve University. 1986.

[{Segev & Shoshani 1987] Segev, A. and A. Shoshani. Logical Modeling of Temporal Data, in Proceedings
of the SIGMod 1987 Annual Conference, Ed. U. Dayal and I. Traiger. Association for Computing
Machinery. San Francisco, CA: ACM Press, May 1987, pp. 454-467.

(Snodgrass 1982] Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD. Diss. Com-
puter Science Department, Carnegie-Mellon University, Dec. 1982.

{Snodgrass & Ahn 1986] Snodgrass, R. and 1. Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.
1986, pp. 3542.

{Snodgrass 1987] Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on Database
Systems, 12, No. 2, June 1987, pp. 247-298.

(Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and Implementa-
tion of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 189-222.

[Tansel 1986] Tansel, A.U. Adding Time Dimension to Relational Model and Extending Relational Alge-
bra. Information Systems, 11, No. 4 (1986), pp. 343-355.

(Tansel & Arkun 1986] Tansel, A.U. and M.E. Arkun. HQUEL, A Query Language for Historical Rela-
donal Databases. Technical Report. Bernard M. Baruch College, CUNY. Jan, 1986.

[(Ullman 1982) Ullman, J.D. Principles of Database Systems, Second Edition. Potomac, Maryland: Com-
puter Science Press, 1982.

[LBL 1981) Proceedings of the First International Workshop on Statistical Database Management. Ed.
HXK. Wong. 1981,

{LBL 1983] Proceedings of the Second International Workshop on Statistical Database Management. Ed.
J. McCarthy. 1983.

Appendix: Syntax Summary

In order to accommodate aggregates, the TQuel syntax [Snodgrass 1987] is slightly augmented.
TQuel is a superset of Quel, that is, ali legal Quel statements with aggregates are also legal TQuel state-

ments with aggregates. The following are the additions made to the above mentioned TQuel syntax.

< expression> ::=In addition to the TQuel syntax, include:
| < aggregate term>
< aggregate term> ;= < aggregate op> (< expression> < aggregate tail>)
= varts (<e-expression> < aggregate tail>)
< aggregate tail> = < by clause> < for clause> < retrieve tail>
< by clause> z=¢l by < atribute list>
< atmbute list> = < expression> | < attribute list> , < expression>
49
------ e e i Tt 2 S AP e T e s e S T et N N

Y RN

_I L PN

v
1Y,
N < aggregale op> = count | countUl suml| sumU!| avgl avgU!l stdev!| stdevU
o) . . .
. | any!| minl max| first!| last| avgti per <lime unit>
< for clause> :=¢l for each<timeunit>! for each instant| for ever
I < time unit> = millisecond| second! minute!| hour
{ day! week | month!| quarter| year! decadel ---
’ < interval element> ::=In addition to the TQuel syntax, include:
! I<aggt> (<i-expression> < aggregate tail>)
< agg n= earliest! latest
V where < i-expression> evaluates to an interval (i.e., a pair of timestamps) and < e-expression> evaluates (0
an event (i.e., a single timestamp).
l
, +
{
]
)
y ¢
¥ "
L
b
50 K
"
»
o T e e A ey A T o T o e g

U

»

LV LR

W)

sttt

nldintaed

L

h SRR }

S R 4

e 5 70T

[o S S S S I

-

